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Abstract:-
Air pollution in Taiwan is mainly created domestically (by factories and power plants) or sent by other countries. Air 
quality is notably worse in the south compared to other areas due to the establishment of industrial areas and the northeast 
monsoon bringing pollutants that are not only slow to sediment, but can also result in the deterioration via air pollution. 
Also, it is not common to evaluate the characteristics and classification via air pollution in a region by the level of 
pollutants in Taiwan. Therefore, this study uses seven representative air quality variables from five air quality monitoring 
stations at a steel plant in Kaohsiung, Taiwan, and applies multivariate statistical analysis to discuss the actual situation
of, while reflecting the differences in, air quality among the five stations. It then applies the results to the classification of 
air quality in Southern Taiwan. Through factor analysis under multivariate statistics, the eight air quality variables can 
be simplified and categorized into three main factors: photochemical polluting factors, organic polluting factors, and fuel 
factors. These three are the main factors that affect air quality in regions near the steel plant. Moreover, through cluster 
analysis, air quality in this particular area can be categorized into four clusters, with each cluster representing different 
characteristics and levels of pollution in the area. The results of this research can provide a reference for government 
agencies to propose and verify new air quality assessment models, formulate testing models of allowed increment limits 
of air pollutants, and determine the effectiveness of air quality improvement schemes. 
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1. INTRODUCTION 
Air pollution is an important environmental issue in Taiwan and can be either locally produced or transported long 
distances from East Asia (Cheng et al., 2012; Chuang et al., 2017; Hsu and Cheng, 2019). The major domestic 
anthropogenic emissions are from urban areas, coal-fired power plants, crude oil refinery plants, industrial parks, and 
major highways and are emitted mostly in western Taiwan (Hsu and Cheng, 2016). In addition to emissions, 
meteorological conditions have been shown to play an important role in affecting air pollution dispersion in Taiwan (Lai, 
2014; Kuo and Wu, 2018; Kuo and Ho, 2018). 
In addition, air pollution is a well-known environmental problem associated with urban areas around the world. Various 
monitoring programs have been used to determine air quality by generating vast amounts of data on the concentration of 
each of the previously mentioned air pollutant in different parts of the world. The large data sets often do not convey air 
quality status to the scientific community, government officials, policy makers, and in particular to the general public in 
a simple and straightforward manner. This problem is addressed by determining the Air Quality Index (AQI) of a given 
area. AQI, which is also known as the Air Pollution Index (API) (Murena,2004) or Pollutant Standards Index (PSI) (EPA, 
1994), has been developed and disseminated by many agencies in the U.S. Canada, Europe, Australia, China, Indonesia, 
Taiwan, etc (Cairncross et al., 2007). 
This study uses data from five air quality monitoring stations at a steel plant in Kaohsiung, Taiwan, and applies 
multivariate statistical analysis to classify air quality according to levels of pollution, conditions of pollution, and 
characteristics of pollution. It also refers to the pollutant standards index (PSI), while discussing the relations among air 
quality parameters and the distribution characteristics of air pollution in the monitoring work stations. Hopefully, we can 
truly reflect the differences in air quality among the different stations and establish an evaluation model applicable to the 
characteristics and classification of all air quality monitoring work stations in Taiwan, thereby providing a reference for 
the management of air quality monitoring work stations. 

2. Methodology 
2.1 The application of pollutant standards index 
At present, the status of Taiwan’s air quality is communicated to the public with the Pollution Standards Index (PSI) which 
is based on a similar system created by the US Environmental Protection Agency (EPA). Taiwan first used the PSI in 
1993 to measure air pollution levels by the ROC Environmental Protection Administration. PSI calculates the sub-index 
of pollutants based on the influence of five pollutants: particulate matter with a particle size below 10 microns (PM10), 
sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3), all of which are measured on a 
daily basis. The maximum values of the daily sub-index then are used as the PSI value measured by the monitoring station. 
The main purpose is to monitor the integral air quality of central Taiwan and suggest areas for improvement. Through the 
evaluation of PSI, local air quality statuses can be fully understood. The concentration levels of the five air pollutants are 
used to determine PSI which is then relayed as a number between 0 and 500 and classified into Good (0~50), Moderate 
(51~100), Unhealthy (101~199), Very Unhealthy (200~299), and Hazardous (≥300) levels. The ranges for PSI and 
pollutant concentration levels as well as PSI are shown in Table 1. 

Table 1 Comparison table of pollutant concentration and pollution sub-index. 

Pollutant PM10 SO2 CO O3 NO2

Statistics
24-hour 
average

24-hour 
average

Maximum 8-hour 
average within a
24-hour period

Maximum and
minimum within
a 24-hour period

Maximum and
minimum within a

24-hour period
Unit μg/m3 ppb ppm ppb ppb
PSI
50 50 30 4.5 60

100 150 140 9 120
200 350 300 15 200 600
300 420 600 30 400 1200
400 500 800 40 500 1600
500 600 1000 50 600 2000

2.2 Places of sample and data collection 
The data used in this paper were obtained from the five air quality monitoring stations (referred to as stations A, B, C, D, 
and E) at a steel plant in Kaohsiung, Taiwan, between June 2017 and June 2019. Data were collected every day, except 
for the period during which the change of monitoring stations obstructed data collection and days with severe weather 
conditions that hampered data collection. A total of 610 complete sets of data were collected. Figure 1 shows the 
geographic location of the steel plant, and Figure 2 is the position chart of the steel plant; said plant is adjacent to the Port 
of Kaohsiung and occupies an area of approximately 550 hectares. 
To ensure the completeness and diversity of the collected air quality data, this study chose the following seven air quality 
parameters: SO2, NO2, CO, PM10, O3, THC, and NMHC, to perform a factor analysis to find common factors. The 
concentration of said air quality parameters follows the standard set by Taiwan’s Pollution Standards Index (PSI) (as
shown in Table 1). The concentration of SO2 is the average of data collected within a 24-hour period; the concentration 
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of NO2 is the maximum of data collected within a 24-hour period; the concentration of CO is the maximum of data 
collected within an 8-hour period; the concentration of PM10 is the average of data collected within a 24-hour period; the 
concentration of O3 is the minimum of data collected within a 24-hour period; and the concentration of THC and NMHC 
is the average of data collected within a day. 

2.3 Multivariate statistical analyses—factor Analysis 
For selecting the elements to be included in FA, a minimum of 70% of the samples needs to have measurable levels of the 
element. In principle, FA actually groups the elements whose concentrations fluctuate together from one sample to another 
and separates these elements into so called “factors” (Henry et al., 1984; Martinez et al., 2012). Factor analysis is used for 
source apportionment in environmental data, with the argument that those elements that fluctuate together have some 
common characteristics. Ideally, each extracted factor represents a source affecting the samples. Factor analysis has been 
performed using the Statgraphics plus program package (Statgraphics Manual 3.1, 1997). The initial components were 
rotated using the varimax method to obtain final eigenvectors with more representatives of individual sources of variation. 
Although there are no well-defined rules on the number of factors to be retained, usually either factors that are meaningful 
or factors with eigenvalues larger than 1 are retained. In theory, irrelevant factors have zero eigenvalues and eigenvalues 
less than 1 indicate that factor contributes less than a single variable. The physical meaning of the factors must be 
interpreted by observing which elements or variables display high (≥0.25) loading within the factor. Loadings less than 
0.25 in absolute value may be dominated by random errors. 

2.4 Multivariate statistical analyses—cluster analysis 
Cluster analysis is an exploratory data analysis tool for solving classification problems. Its objective is to sort cases into 
groups, or clusters, so that the degree of association is strong between members of the same cluster and weak between 
members of different clusters. Each cluster thus describes, in terms of the data collected, the class to which its members 
belong; and this description may be abstracted through use from the particular to the general class or type. Hierarchical 
agglomerative clustering is the most common approach as it provides intuitive similarity relationships between any one 
sample and the entire dataset. It is typically illustrated by a dendrogram (tree diagram) (McKenna 2003). The dendrogram 
provides a visual summary of the clustering processes, presenting a picture of the groups and their proximity, with a 
dramatic reduction in dimensionality of the original data. Additionally, cluster analysis helps in grouping objects (cases) 
into classes (clusters) on the basis of similarities within a class and dissimilarities between different classes. The class 
characteristics are not known in advance but maybe determined from the analysis. The results of CA help in interpreting 
the data and indicate patterns (Vega et al. 1998; Tobiszewski, et al., 2010). 
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3. Results and discussion 
3.1 Selection of the results of factor analysis 
This study adopts Varimax Rotation under factor analysis to carry out orthogonal rotation to explain the different 
characteristics of each factor. According to the analysis results, there are three factors with eigenvalues greater than one, 
as shown in Table 2. The total cumulative variance explained by these three factors is 73.568%, while their eigenvalues 
are 2.106, 1.685 and 1.231, respectively. As indicated separately in Table 3, the KMO value is 0.630, hence bigger than 
0.5, which is suitable for factor analysis according to Kaiser’s viewpoint. Furthermore, the χ2 value obtained from 
Bartlett’s Test of Sphericity is 2150.397 (the degree of freedom is 22); this value has reached the significance level, which 
means that common factors exist in the relevant matrix of the population, and it is thus suitable for conducting a factor 
analysis.  

Table 2 Results of factor analysis and the variance explained 

Table 3. KMO and Bartlett’s test table of seven air quality parameters 

Kaiser-Meyer-Olkin measure of sampling adequacy .630 

Bartlett test of sphericity Chi-square distribution 2150.397 

Degree of freedom 22 

Significance .000 

3.2 Determining which factors to use 
We can determine the number of main factors based on the number of factors with eigenvalues greater than one, as 
mentioned above. Through the component matrix that underwent orthogonal rotation, as shown in Table 4, we can choose 
variates among the factors. While the rotated matrix can explain the characteristics of each factor, the three factors can 
also be used to describe the relations and differences among air quality parameters. 

Table 4. Loading matrix of factors

3.3 Explanatory factors 
Table 2 indicates that there are three main factors affecting air quality at the steel plant, while from the 3D scatter plot of 
factor distribution (Figure 3), we can see that there are three axes: O3, PM10, and NO2 on the same axis and belonging to 
the first factor; SO2 and CO are on the same axis and belong to the second factor; and NMHC and THC are on the same 
axis and belong to the third factor. The following paragraph offers a complete explanation of the characteristics of each 
factor. 
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Figure 3. 3D distribution of main factors

3.3.1 The first factor 
The first factor mainly consists of O3, PM10, and NO2. The total cumulative, as shown in Table 2, reached 31.544%. From 
Table 4, we can see that O3 has the highest factor loading of 0.865. While PM10 can be the factor resulting in poor air 
quality, O3 remains the main contributing factor. In cities with heavy traffic, there is usually a high concentration of O3, 
which can create a yellowish-brown photochemical smog because fuel consumption of cars and scooters produces NOx, 
such as NO and NO2; NO2 can interact with O2 under sunlight and produce O3 and NO. O3 will then interact with total 
hydrocarbons (THCs) emitted by cars or scooters, and produce photochemical smog; this process is the so-called 
photochemical reaction. O3 is an essential air pollution indicator; it contributes largely to air pollution. PM10 and NO2 

churned out by the coking plant and sintering plant of the steel plant are the precursors of O3; also, since there is a cluster 
of industrial areas adjacent to the steel plant, there is always a high concentration of O3 in the atmosphere. 
The factor loading of PM10 for the first factor in Table 4 is relatively high, reaching 0.803. PM10 is a crucial indicator that 
helps to determine the level of air pollution. PM10 in the atmosphere mainly comes from two sources: primary aerosol and 
secondary aerosol. Primary aerosol is usually produced by human activities (such as factories burning materials, emissions 
produced by vehicles, etc.), while other fugitive emission sources (such as street dust and soil dust) and sea salt droplets 
also contribute significantly to air pollution in different areas. These particles, especially those with a diameter smaller 
than 10μm, can enter the lungs and damage the respiratory system. If there is an excessive level of NO2 and other irritant 
gases in the air, they will react with PM10 and form yellowish-brown photochemical smog, which serves as a warning sign 
of severe air pollution. Besides, among all the pollutants that result in poor air quality, PM10 is the primary indicative 
pollutant. PM10 in the air around the steel plant mostly comes from burning and coking coals of the coking plant and 
sintering plant. 
Besides, the factor loading of NO2 for the first factor in Table 4 is 0.710. NO2 mostly comes from vehicle emissions, coal-
fired power plants, and other forms of industrial burning, which create NO that later reacts with oxygen in the air and 
turns into NO2. While NO2 is a crucial indicator of air pollution, on a windless day, NO emitted by cars can accumulate 
in the air and trigger photochemical reactions, so it is also one of the pollutants causing photochemical smog. NO2 in the 
air around the steel plant mostly comes from burning and coking coals of the coking plant and sintering plant. 
To sum up the above analysis results, O3, PM10, NO2 and other main pollutants and activities causing pollution are 
correlated to the photochemical reaction; this is why the first factor is referred to as the “photochemical pollutant factor.” 

3.3.2 The second factor 
The second factor consists of SO2 and CO; its total cumulative, as shown in Table 2, reaches 25.096%. From Table 4, we 
can see that SO2 has the highest factor loading, 0.806. SO2 is usually produced by burning minerals containing sulfur. 
Since diesel-fueled vehicles and industrial emissions are closer to receptors in cities, they are the key source of SO2 in 
cities. In addition to harming plants and humans, SO2 also causes local and regional acid rain (Chou, 2010). Furthermore, 
SO2 is an important air pollution indicator. SO2 in the air around the steel plant mostly comes from burning and coking 
coals of the coking plant, sintering plant, and converter plant. 
The factor loading of CO for the second factor in Table 4 is 0.763. CO mostly comes from vehicle emissions and partially 
from the incomplete combustion of fuels in factories and power plants, so we can see that it is a kind of gas produced by 
incomplete combustion of fuels containing carbons. CO is an essential air pollution indicator as well, and has the highest 
concentration among other pollutants in the air (Kuo and Ho, 2018). The coking plant, sintering plant, blast furnace plant 
and steel plate plant in the steel plant also produce CO due to incomplete combustion during operations. 
To sum up the above analysis results, SO2 and CO mostly come from burning fuels, which can be referred to as “fuel 
factors.” 
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3.3.3 The third factor 
The third factor consists of NMHC and THC; its total cumulative, as indicated in Table 2, is 16.928%. Also, from Table 
4, we know that the factor loading of NMHC is 0.924, while that of THC is 0.862. The factor loadings of these two factors 
are utterly high, from which we can see that the two pollutants are highly correlated. These volatile organic compounds 
mainly stem from industrial activities or emanate into the air when filling gasoline in vehicles. NMHC can form 
photochemical smog, O3, and other pollutants through the photochemical reaction under sunlight, or even produce 
secondary suspended particles, having a profound impact on the human respiratory system (Murena, 2004). The coking 
plant, blast furnace plant and hot rolling mill produce NMHC and THC of higher concentrations during operation. 
Since NMHC and THC are both volatile organic compounds, the third factor can thus be referred to as “organic pollutant 
factor.” 

3.4 An analysis of air pollution characteristics: the results of cluster analysis 
Before conducting cluster analysis, this study produced a standardized component score coefficient matrix in analyzing 
the above three factors, and then carried out a linear combination. After timing the component score with the value of the 
original variables, the factor score of each factor was obtained. The factor scores of the three main factors were used as 
the samples’ measurement, i.e., “clustering variables”, to classify air quality into clusters, while homogenizing them at 
the same time. The two-stage clustering method was applied during clustering. After acquiring a general clustering result 
using a hierarchical clustering method, the K-mean method was used to test different clusters. In the end, four clusters 
were chosen to differentiate air quality around the steel plant. The relationships among clusters and factors are 
demonstrated in Figure 4, while Figure 5 is a distribution graph of the four clusters from each air quality monitoring work 
station. 
In Figure 4, we observe that the three factors in the 4th cluster all have a high factor score, and they are the worst among 
the four clusters in terms of air quality. The score of the first factor is exceptionally high. In the second cluster, the first 
and second factors have the lowest points. Transforming the four clusters into original air quality monitoring items will 
make it easier for us to understand the characteristics of air quality around the steel plant, as indicated in Table 5. 

Figure 4. Relationships among clusters and factors 

Table 5. Average and maximum values of clusters and air pollution parameters 
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3.4.1 The first cluster 
This cluster, as indicated in Table 5, has the highest NO2 concentration among the four clusters; however, it only ranks 
second in terms of the photochemical pollutant factor score in Figure 4. This is because no correspondent index can be 
used to measure the concentration of NO2 in Taiwan, as shown in the pollutant standards index (PSI) mentioned in Table 
1; under PSI, the concentration of any substance only ranges from 1 to 100. However, if the concentration of NO2 reaches 
600 ppb, the corresponding value under PSI should be 200. The highest concentration of NO2 observed in this steel plant 
was 523.6 ppb, which is considered relatively high. However, since PSI could not adequately present it, the impact of 
photochemical pollutant on this cluster is weaker when compared with that on the 4th cluster. In addition, this cluster has 
the third-highest factor scores in terms of organic and fuel factors, with an average concentration of NMHC reaching 0.38 
ppb and an average concentration of THC reaching 1.86 ppb, respectively. Under the fuel factor, the average concentration 
of SO2 is 12.88 ppb, while that of CO is 1.05 ppm. The factor scores of this cluster mostly rank between the second and 
the third-highest; its air quality is classified as good to average. While the concentration of NO2 in this cluster is generally 
higher than that in other clusters, poor or harmful air quality among the five stations was not observed. NO2 concentration 
reaching 523.6 ppb was observed in Station D; however, it is not classified as poor to harmful air quality. From the above 
analysis results, the air quality under this cluster can be classified as “air with medium level photochemical pollution”, 
with Stations D and E being representative of this cluster. 

3.4.2 The second cluster 
This cluster, as shown in Figure 4, has the lowest factor scores in terms of the photochemical pollutant and fuel factors. It 
also has the second-lowest factor score in terms of organic pollutant factor. The results mean that air quality in this cluster 
is relatively good. In Table 5, we can see that no matter under what parameters, this cluster generally has a lower 
concentration than other clusters; concentration values do not increase sharply, either. Therefore, the air quality of this 
cluster falls between good and average, with average air quality being the majority; the overall air quality is better than 
that of the first cluster. This cluster is mostly affected by the concentration of PM10. Air quality will be considered average 
if the concentration of PM10 falls between 50 and 150 μg/m3; the concentration of PM10 in this cluster mostly remains 
above 50 μg/m3. However, since the concentration of the other six air quality parameters are not considered to be high, 
the air quality of this cluster is mainly classified as average. Data in this cluster were collected between Stations A, B, C, 
D, and E. The days of data being collected were almost the same. For instance, the cluster includes data collected on 64 
days at Station A, 57 days at Station B, 55 days at Station C, 62 days at Station D, and 60 days at Station E. In conclusion, 
the air quality of this cluster can be classified as “slightly polluted.” 

3.4.3 The third cluster 
This cluster, as indicated in Figure 4, has the highest factor score in terms of the fuel factor and the third highest factor
score in terms of the photochemical pollutant factor. From Table 5, we also know that the average concentration of SO2

in the fuel factor under the third cluster reaches as high as 110.54 ppb, which is the highest among all the clusters. On the
other hand, the average concentration of CO under the same cluster is 1.54 ppm, which is the second-highest among them 
all. The concentrations of SO2 are between 40.69~341.02 ppb, which indicates a considerable effect of fuel factor on this 
cluster. Moreover, from Figure 4, we understand that this cluster only has the third-highest factor score in terms of the 
photochemical pollutant factor. The average concentration of NO2 under this cluster is 51.38 ppb, that of PM10 is 122 
μg/m3, and that of O3 is 50.12 ppb. From the above results, we can see that the concentration of photochemical pollutants 
at monitoring stations with higher fuel factor loading did not increase significantly. The air quality of this cluster is 
classified as average to poor, with average air quality being observed the most. The worst air quality was observed at 
Station C. It was winter, and the concentration of SO2 reached as high as 341.02 ppb. This cluster also includes days with 
PM10 concentration above 150 μm/m3, which resulted in poor air quality. Data under this cluster were mainly collected at 
Stations B and C, with 64 days at Station C and only nine days at Station D. To sum up the above results, the air quality 
of this cluster can be classified as “seriously polluted by the fuel factor.” 

3.4.4 The fourth cluster 
This cluster, as shown in Figure 4, has the highest factor score in terms of the photochemical pollutant factor, and the 
second-highest factor score in terms of the organic pollutant and fuel factors. The results indicate that the level of pollution 
under this cluster is the highest among all the clusters. In Table 5, we can see that the average concentration of O3 under 
the photochemical pollutant factor is 58.24 ppb, which is the highest among all the clusters; the average concentration of 
PM10 is 182.15 μg/m3, which is also the highest among all the clusters; and the average concentration of NO2 is 86.91 ppb, 
which is the second-highest among all the clusters. The steel plant is a place easily affected by air pollution due to its 
location and the type of industry in the area. PM10 of high concentration plays a significant role in keeping the air pollution 
level high. To illustrate, in this cluster, the concentration of PM10 is always above 150 μg/m3, and the number is especially
high during the period of late autumn and early spring in the following year, with the maximum concentration reaching 
501μg/m3. The main factor causing this phenomenon is the external pollutants brought by the northeast monsoon, namely 
sandstorms, which keep the air pollution level at red alert, meaning that it is harmful to humans. Moreover, this cluster 
also has a high factor score in terms of the fuel factor, with an average concentration of SO2 reaching 35.16 ppb, which is 
the second-highest among all the clusters. Its average concentration of CO is 1.50 ppm, which is also the highest among 
all the clusters. However, the maximum concentration of CO within eight hours of data collection at Station D reached as 
high as 27.69 ppm, which was harmful to humans. This cluster also obtains the second-highest factor score in terms of the 
organic pollutant factor among all the four clusters, with the highest average concentration of THC of 2.69 ppb and the 
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second-highest average concentration of NMHC of 0.74 ppb. However, since organic pollutants are not clearly defined 
under PSI in Taiwan, while having smaller impacts on air pollution, their factor scores in Figure 4 are relatively low. The 
air quality of this cluster ranges between average and harmful, with the air quality at a harmful level being observed the 
most. Data of this cluster were collected from Stations A, B, C, D, and E. The cluster includes data collected at Station A 
on 37 days, Station B on 32 days, Station C on 49 days, Station D on 40 days, and Station E on 59 days. The harmful-
level air quality could be observed mainly at Stations A, B, and E. The air quality of this cluster can be referred to as “air 
with severe photochemical pollution.”

Figure 5. The distribution of the four clusters at the five air quality monitoring work stations

4. Conclusion 
This study used data from five air quality monitoring work stations at a steel plant in Kaohsiung, Taiwan, and applied 
multivariate statistical analysis to classify air quality according to levels of pollution, conditions of pollution, and 
characteristics of pollution. This study also referred to the pollutant standards index (PSI), while discussing the relations
among air quality variables and the distribution characteristics of air pollution at the monitoring work stations. The results 
of factor analysis under multivariate statistical analysis methods indicated three factors with an eigenvalue greater than 1;
first factor: “organic pollutant factor”, second factor: “photochemical pollutant factor” and third factor: “fuel factor.” The 
total cumulative explained is 77.568%. Air pollution caused by the three factors in sequential accordance with severity is: 
photochemical pollutant factor> fuel factor> organic pollutant factor. Moreover, this study tested different clusters using 
K-mean methods and divided them into four different clusters. The first cluster is “air with medium level photochemical 
pollution”, the second is “air that is slightly polluted,” the third is “air seriously polluted by the fuel factor”, and the fourth 
is “air with severe photochemical pollution.” Furthermore, since the data on methane and part of the data we had were 
incomplete, we were unable to conduct a multivariate statistical analysis on the data. If we can fill this gap in the future, 
we could acquire more accurate analysis results. The results of this research can serve as a reference for government 
agencies to propose and verify new air quality assessment models, formulate testing models of allowed increment limit of 
air pollutants, and determine the effectiveness of air quality improvement schemes.  
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