

EFFECTS OF PLANTING HALOXYLON APHYLLUMON CARBON SEQUESTRATION RATE AND SOME SOIL PROPERTIESIN A ARID REGION IN IRAN

M., Keneshloo^{1*}, Sh. Nikoo², M.K., Kianian³

¹*M.Sc graduate of combating desertification, Faculty of Desert Studies, Department of Combating Desertification, Semnan University, Semnan, Iran .Address: Desert Studies Faculty, Semnan University, Campus 1, Semnan, I. R. of Iran. Postal Code: 35131-19111.*

^{2,3}*Asistant professor, Faculty of Desert Studies, Department of Combating Desertification, Semnan University, Semnan, Iran .Address: Desert Studies Faculty, Semnan University, Campus 1, Semnan, I. R. of Iran. Postal Code: 35131-19111.*

³*E-mail: m_kianian@semnan.ac.ir , Phone Number: +989113265641*

***Corresponding Author:-**

E-mail: masoudkeneshloo@gmail.com , Phone Number: +982331535555.

Abstract:-

*A major activity in the desert areas of Iran to control wind erosion, improving environmental conditions especially soil characteristics and increasing carbon sequestration in soil and plants is planting compatible and resistant species, in particular *Haloxylon aphyllum*. The study area, in the central Iran that was planted with *Ha.aph* (in the early 1980s), reflects the environmental and management conditions of more than 800,000 hectares of arid lands in Iran well. 5 profiles were randomly drilled at the bottom of the *Haloxylon sp.* shrubs and 5 profiles are in the adjacent control area without any vegetation. Soil sampling was carried out from 0 to 30 cm depth. Samples were transferred to the laboratory for measurement of electrical conductivity, pH, organic matter, organic carbon, lime, phosphorus, potassium, soil texture, calcium, magnesium, sodium, soil bulk density and the amount of carbon sequestration in the soil. The data from the grown area and the control were compared using independent t-student test to determine the effect of planting *Haloxylon sp.* on the soil characteristics of the area. The results show that planting *Haloxylon sp.* has increased the organic matter content of organic carbon, electrical conductivity, acidity, phosphorus and potassium, and decreased calcium carbonate, silt, calcium, magnesium and sodium in soil. Also, the comparison of the data in the control and planting area indicates a slight change in the soil texture with an increase in the percentage of sand and a decrease in the percentage of silt and clay in the planting area. Planting *Haloxylon sp.* increased the average amount of sequestered carbon in soil by 28420.2 kg/ha.*

Keywords:- *Arid area, Carbon Sequestration, *Haloxylon aphyllum* soil characteristic,*

INTRODUCTION

Soil erosion is the most important factor in land degradation that some of its most important consequences in Iran include decreasing about 11% of Iranian forests over the period of 40 years, the sedimentation of about 240 million cubic meters in the country's dams (equivalent to five dams with 50 million cubic meters per year), desertification in more than 100 million hectares of lands in the country, reducing the crop production capacity and increasing the concentration of greenhouse gases (CO₂, CH₄, N₂O, water vapor and N₂O) into the atmosphere and induce global warming (Rouhani et al., 2005, Mojarrad and Rouhani, 2010). The most important factor in land degradation in desert areas is wind erosion. The major activity that has been carried out in the desert areas of the country to combat erosion has been biologic operations or vegetation establishment, especially with *Haloxylon* sp. (Karimpour Reyhan, 2005). These activities in addition to controlling erosion and improving the environmental conditions, especially the soil properties (Zehtabian et al., 2007), the increase in carbon sequestration in the aerial and underground parts of plants and soils, thereby reducing the effects of earth warming caused by the increase of greenhouse gases specific carbon dioxide, such as the degradation of ecosystems, increased drought and floods, reduced species diversity, and eliminating of climate and ecological balance (Lal, 2004; Richards et al., 2007; Abdi et al., 2008).

So far, many studies have been carried out on the role of vegetation and soil in different habitats in carbon stabilization and sequestration, because the type of soil and plant species are one of the most important factors in this matter (Binkley et al., 2003). Among them, Jafarian et al. (2013), in the wheat fields of Kiasar region, the potential of sequestration in plant biomass was 1.884 tons per hectare and 16.332 tons per hectare in soil. Hassan-Nejad and colleagues (2014) estimated the amount of carbon sequestration 50.96 and 45.51 t / ha, respectively in cottony and *Dactylis glomerata* habitats at Hezarjarib of Behshahr that are under grazing.

Estimation of the amount of carbon sequestration of *Cupressus Arizonica* and *Robinia* sp. masses around Tehran showed that the amount of carbon sequestration in these two masses was 78.19 and 60 tons per hectare, respectively (Hosseini and Sefidi, 2014). Rosta et al. (2013) reported the amount of carbon sequestration at 12.78 tons per hectare in the soil of the forest bundle of *Atlantica Pistacia* in Firoozabad off Fars province.

Establishment vegetation, in addition to the effect on soil carbon sequestration, has an impact on soil physical and chemical properties such as electrical conductivity, acidity, texture, sodium, calcium, potassium, and phosphorus.

Therefore, in the present study, the effect of planting *Haloxylon* sp. on these characteristics has been studied, until in addition to studying the effect of planting *Haloxylon* sp. on the amount of carbon sequestration rate in the soil, based on its effect, we can determine whether planting *Haloxylon* sp. has been a suitable method for improving the environmental conditions of this area or not? So far, many studies have been carried out on the effects of planting *Haloxylon* sp. on soil properties that have produced different results in different regions.

Jafari et al. (2003) reported the effects of planting *Haloxylon* sp. on increasing organic matter, potassium, phosphorus, nitrogen, electrical conductivity and soil acidity in Hussein Abad area of Qom, while the sodium content of the soil did not significantly change as a result of planting. Planting *Haloxylon* sp. in Kalpush plain of North Khorasan have increased electrical conductivity and soil acidity, while significant changes in texture, saturation moisture, and amount of organic matter have not been observed (Jafari and Niknahand, 2012). Nosrati et al. (2016) reported an increase in electrical conductivity, acidity and soil lime, soil texture changes and no organic matter variation as a result of planting *Haloxylon* sp. in Roshtkhar district of Khorasan azavi. Mohammadi et al. (2014) stated that the increase of electrical conductivity and soil acidity are considered as the results of planting *Haloxylon* sp. in Abbas Abad area of Mashhad. planting *Haloxylon* sp. has reduced acidity and increased organic matter, electrical conductivity, phosphorus, potassium, calcium, sodium, and magnesium in the Neyatak area of Sistan (Farahi et al., 2014). Mahdavi Ardakani et al. (2011) stated an increase in soil phosphorus and reduce of electrical conductivity. Also, Bazrafshan (2011) showed to reduce acidity of soil, Jafari and Erfanzadeh (2005), to reduce soil phosphorus, Mlampo & Nyathi Mapaure (2005) and Khedri et al. (2011) pointed to an increase in the amount of sodium in the soil due to planting *Haloxylon* sp.

Materials and Methods

The studied area description

The study area is located in the southeastern part of Semnan city, including lands planting *Haloxylon* sp. in the east and northeast of Ala village and between Ala Industrial Park and agricultural lands, which planting *Haloxylon* sp. has been over 40 years old. The mean annual rainfall of the area is about 144.2 mm, the average annual temperature is 18°C, the average wind speed is 4 m/s, the wind direction is predominantly northwest and north, and the climate is arid.

Research method

The indicator area was specified using the Google Earth satellite imagery and field explorations in the region. In this case, 5 profiles were randomly drilled at the bottom of the *Haloxylon* sp. shrubs and 5 profiles are in the adjacent control area without any vegetation. Depending on the condition of the soil horizons and the presence of hard layer in the soil, the depth of rooting maximum of the *Haloxylon* sp. in the soil, and therefore, the most planting *Haloxylon* sp. phytolime effect on the soil, soil sampling was carried out from 0 to 30 cm depth. Samples were transferred to the

laboratory for measurement of electrical conductivity, pH, organic matter, organic carbon, lime, phosphorus, potassium, soil texture, calcium, magnesium, sodium and soil bulk density. After measuring the characteristics, the data from the grown area and the control were compared using independent t-student test to determine the effect of planting *Haloxylon* sp. on the soil characteristics of the area. Also, in order to determine the amount of carbon sequestration in the soil of planting area, the relation (1) was used.

Relation (1):

$$Cc = 1000 \times C (\%) \times BD \times E$$

Where Cc is the amount of carbon sequestration in soil in kilograms per hectare, E is the depth of soil in cm, BD is the bulk density of the soil, and C is the Soil organic carbon percentage.

Results

There is a significant difference between the planting *Haloxylon* sp. and the control area in all variables, except for the percentage of sand, clay content and bulk density. Differences in percentage of silt in 5% and other variables were significant at 1% level. The results (Table 1)

1) show that planting *Haloxylon* sp. has increased the organic matter content of organic carbon, electrical conductivity, acidity, phosphorus and potassium, and decreased calcium carbonate, silt, calcium, magnesium and sodium in soil. Also, the comparison of the data in the control and planting area indicates a slight change in the soil texture with an increase in the percentage of sand and a decrease in the percentage of silt and clay in the planting area.

Table 1. Student t-test for comparison of sample and control averages

Parameters	Bulk density	Na	Mg	Ca	Clay	Silt	Sand	K	P	CaCO ₃	OM	OC	PH	EC
Samples mean	1.578	423.1	63.7	172.8	27.2	27.8	46.28	267.5	2.09	19.28	1.5	0.87	7.3	73
Controls mean	1.576	780.1	269.1	442.6	27.8	31.8	42.34	193.8	1.65	20.49	0.48	0.27	6.82	36.5
t	**0.031	-	-	**-	**-	**-	**1.98	**112.3	**5.5	**-	**15.2	**15.1	**3.7	**60

*and ns show significance at the level of 5%, 1% and not significant, respectively

Table 2: Calculation of carbon sequestration rate in soils in planting and control areas

Sample number	1	2	3	4	5	Mean
Sample amount (kg/ha)	42132.6	40035	41185.1	40712.4	41860.4	41185.1
Control amount (kg/ha)	12292.8	12765.6	13238.4	13238.4	12292.8	12765.6

The results of calculating the carbon sequestration rate according to (1) relation, in table (2), show that planting *Haloxylon* sp. increased the average of soil carbon sequestration from 12762.6 kg/ha in non-vegetation areas to 41185.1 kg/ha in planting area. In general, planting *Haloxylon* sp. increased the average amount of sequestered carbon in soil by 28420.2 kg/ha.

Discussion and conclusion

Based on the results, planting *Haloxylon* sp. increases the electrical conductivity and alkalinity of the soil. This could be due to the falling *Haloxylon* sp. remains on the soil, as well as the transfer of salts from depths to soil surface by its roots. Nik Nahad (2002), Jafari et al (2003), Jafari et al (2005), and Mohammadi et al. (2014) achieved similar results. The amount of soil lime in planting areas has decreased significantly compared to the control areas, which may be due to its absorption by the plant. Nosrati et al. (2016) reported a different result.

Also, the reduction of sodium, magnesium and calcium in the planting area compared to the control areas may be due to the absorption of these elements by the *Haloxylon* sp. Jafari et al. (2003) and Jafari et al. (2007) pointed to similar results. The soil texture of the region does not show significant change due to the effect of planting *Haloxylon* sp. This result can be expected due to the warm and dry climate, low rainfall, high temperatures and, consequently, low levels of microorganisms and their activities for organic matter decomposition and the limitation of soil pedogenes is in the region. Also, for the same reasons, the bulk density of the soil in the planting and control area is not significantly different. Jafari and Nik. Nahad (2012) have found similar results in their research.

The reason for increasing the amount of organic matter and soil carbon is that there is no vegetation in the control area. Any vegetation can reduce the amount of CO₂ in the atmosphere by absorbing it to carry out the process

of photosynthesis and reduce the negative effects of its increase as the most important greenhouse gas. With the return of plant residues to the soil (especially *Haloxylon* sp. roots that are larger than its aerial parts) and their composition over time, the carbon stored in the plant organs enters the soil and sequestered. The results of Jafari et al. (2007), Joneidi et al. (2011), Su et al. (2010) and Ahmadi et al. (2014) also confirm this.

Of course, in the case that vegetation was present in the region prior to planting *Haloxylon* sp., sometimes planting *Haloxylon* sp. leads to a decrease in organic matter and soil carbon, due to the effect of *Haloxylon* sp. allopathy on other species, as well as its competition with other species and their elimination due to the greater resistance of the *Haloxylon* sp. to the difficult conditions of the environment in arid and its broad horizontal and vertical rooting, it makes it difficult for other species to survive. In such a situation, after the removal of other species, it is observed that the amount of carbon sequestration by *Haloxylon* sp. is less than that of other species that had been present in the region prior to planting *Haloxylon* sp. Therefore, if planting *Haloxylon* sp. is to increase the amount of carbon sequestration in the soil, then the vegetation cover type in the region should be considered (Shakeri et al., 2004; Abbasi et al., 2012 and Dehghani Bidgoli, 2017).

Also, phosphorus and potassium elements, which indicate the fertility of soils, increase as organic soils increase. Jafari et al. (2003), Jafari et al. (2007) and Joneidi et al. (2011) also showed that planting *Haloxylon* sp. increased potassium and phosphorus elements.

planting *Haloxylon* sp. By increasing the amount of some soil parameters, such as electrical conductivity and alkalinity, causes getting worse the soil conditions in the area and by increasing the parameters such as organic matter, organic carbon, phosphorus and potassium, increased soil fertility and improved its conditions. Considering that no vegetation was present in the region prior to planting *Haloxylon* sp. and this action controlled the wind erosion and significantly increased the amount of carbon sequestration in the soil, it seems that its positive effects are far more than its negative effects and a good action has been taken in the region.

References

- [1]. Abbasi, M., Moammeri., M. and Tavili, A., 2012. Allopathic effect of *Haloxylon* Ammodendron extract on germination and some characteristics of *Agropyron desertorum*. Journal of Iranian Seed Science and Technology, 1 (2): 173-183.
- [2]. Abdi N, Maadah Arefi H and Zahedi Amiri GH, 2008. Estimation of Carbon Sequestration in *Astragalus* Rangelands of Markazi Province (Case Study: Malmir Rangeland in Shazand Region), Iranian Journal of Range and Desert Research, 15(2): 269-282
- [3]. Ahmadi, H., Heshmati, G.A. and Naseri, H., 2014. The potential of carbon sequestration in desert lands under the influence of two species of *Haloxylon persicum* and *Stipa grossa* (case study: Aran -Bidgol). Journal of Desert Ecosystem Engineering, 3 (5): 29-36.
- [4]. Bazrafshan, M., 2011. Evaluating the Effect of Desert Restoration on Physical and Chemical Properties of Soils and Underlying plants (Case Study: Najmabad). Master dissertation of Desertification, Faculty of Natural Resources, University of Tehran.
- [5]. Binkley, D., Senock, R., Bird, S. and Cole, T.G., 2003. Twenty years of stand development in pure and mixed stands of *Eucalyptus saligna* and nitrogen fixing *Facultaria moluccana*. For. Ecol. Manage, 182:93–102
- [6]. Dehghani Bidgoli, R., 2017. Effect of *Haloxylon* Ammodendron aerial extract on Germination and Some Morphophysiological Characteristics of *Nitraria schoberi* L., Journal of Seed Research, 7 (25): 58-65.
- [7]. Farahi, M., Jahanteb, A., Khatibi, R., Moghimi Nejad, F. and Mofidi Chalan M, 2014. Investigating the Effect of Tamarix and *Haloxylon* on Soil Properties in Neyatk Region, Sistan. Journal of Research in Rangeland and Desert of Iran, 21 (2): 307-316.
- [8]. HassanNejad, M., Tamartash, R. and Tateian, M. 2014. Comparison of carbon sequestration rate in *Astragalus gossypinus* and *Dactylis glomerata* in mountainous areas of Hezarjaribin Behshahr. Journal of Environment, 40 (1): 29-38.
- [9]. Jafari M., Rasooli, B. Erfanzadeh, R. and Moradi, H., 2005. Investigation on the effect of planting *Haloxylon*, *Atriplex* and *Tamarix* species on soil properties in Tehran-Qom highway. Journal of Iranian Natural Resources, 58 (4): 921-930.
- [10]. Jafari A., NikNahad, H., 2011. Effect of Water and Soil Conservation Operations (planting of *Haloxylon*) on Some Soil Properties (Case Study: Kalpoosh Village, North Khorasan). The first national conference of the desert, Tehran, the International Research Center of the University of Tehran.
- [11]. Jafari, M., NikNahad, H. and Arfanzadeh, R., 2004. Investigating the Effects of *Haloxylon* on Some Soil and Vegetation Characteristics (Case Study: Hossein Abad Region, Qom Province). Desert Journal, 8 (1): 152-162.
- [12]. Jafari, M., Nikoo, Sh. and Sadeghipour, A., 2007. Study of the effect of planting *Haloxylon* on physical and chemical properties of soil, vegetation covers and inhibition of wind erosion (Case study: south east of Varamin city). The 10th Iranian Soil Science Congress, Karaj, Campus of Agriculture and Natural Resources, Tehran University.
- [13]. Jaffarian, Z., Tayefeh, L., 2013. Potential of carbon sequestration in wheat fields of Kiasar, Journal of Agricultural Science and Sustainable Production, 23 (1): 31-41.

[14]. Joneidi, H., Zare Chahuki, M.A., Azarnivand H. and Sadeghipour, A., 2011. Effect of planting Haloxylon and Pistachioon Carbon and Nitrogen Reserves in Artemisia sieberi plains of Semnan Province. *Khoshk Boom Journal*, 1 (4): 15-25.

[15]. Karimpour Reyhan, 2005. Investigating the effect of soil physicochemical properties on the number of Haloxylon plants on the margin of Tabas Playa. *Desert journal*, 10(2).

[16]. Khedri Gharibvand, H., Dianati Tilaki, Gh., Mesdaghi, M., Sardari, M. and Askari, M., 2009. Effect of *Camphorosma monspeliacaeon* soil elements in Chaharmahal and Bakhtiari province, *Journal of Range and Water shed Management*, *Iranian Journal of Natural Resources*, 62(1): 33-47.

[17]. Lal, R., 2004. Soil carbon sequestration to mitigate climate change, *Geoderma*, 123: 1-22.

[18]. Mahdavi Ardashri, R., Jafari, M., Zargham, N. M., Zare Chahouki, M. A., Baghestani Meybodi, N. and Tavili, A., 2011. Investigation on the effects of Haloxylon aphyllum, *Seidlitzia rosmarinus* and *Tamarix aphylla* on soil properties in Chah Afzal Kavir (Yazd), *Iranian Journal of Forest*, 2(4): 357- 365.

[19]. Mlambo, D. P., and Nyathi Mapaure, I., 2005. Influence of *Colophospermum mopane* on surface soil properties and understory vegetation in a southern African savanna. *Forest Ecology and Management*, 212:394-404.

[20]. Mohammadi, R., Naseri, K. and Heshmati, GH., 2014. Effect of planting Haloxylon aphyllum on vegetation and soil (Case study: Abbas Abad area of Mashhad). *Iranian Journal of Research in Rangeland and Desert*, 21 (1): 119-127.

[21]. Mojard Ashnaabad, M., Rouhani, A., 2010. Soil erosion, challenges, costs and benefits of its conservation. *Journal of the Human and Environment*, 8 (3): 47-57.

[22]. NikNahad GharMakhar, H., 1381. Investigation of some effects of planting Haloxylon aphyllum on vegetation and soil characteristics in Qom. Master thesis, Faculty of Natural Resources, Tarbiat Modares University, 69 p.

[23]. Nosrati, K., Hosseinzadeh, M.M., Zare, S., 2016. Modeling of Soil Quality in Desert area of Roshtkhr Region Affected by planting Haloxylon Using Multivariate Statistical Analysis. *Journal of Geographical Studies in Arid Zones*, 6 (23): 96-108.

[24]. Rahimizadeh, A., Farzadmehr, J., Rasthaqi, A. and Ramezani M., 2010. Comparison of the Effect of Haloxylon and Atriplex Species Planting on Vegetation and Soil Characteristics in Rangeland of Salm-Abad Sarbisheh Plain. *Journal of Renewable Natural Resources Research*, 1(2): 1-13.

[25]. Varamesh, S., Hosseini, S.M. and Sefidi, K., 2014. Evaluation of the amount of carbon sequestration in biomass, litter and soil of *Cupressus Arizonica* and *Robinia* sp. masses around Tehran. *Journal of Environmental Science and Technology*, 16 (1): 396-404.

[26]. Richards, A.E., Dalal, R.C. and Schmidt, S. 2007. Soil carbon turnover and sequestration in native subtropical tree plantations, *Soil Biology & Biochemistry* 39, 2078-2090.

[27]. Rouhani, F., Rezaei, M., Mahdavi R., 2005, Estimation of soil erosion and ways to prevent it, A case study in the Khalaatposhan subwatershed of Golpayegan Dam watershed, Isfahan province, Second Conference of Watershed Management and Management Water and Soil Resources, Kerman, Iran Irrigation and Water Engineering Society.

[28]. Rousta, T., Fallah, A., Amir Nejad, H., 2013. Estimation of *Pistacia atlantica* carbon stock (Case study: *Pistacia atlantica* and *Prunus* species Research Forest, Firoozabad in Fars). *Iranian Journal of Forest*, 5 (2): 131-139.

[29]. Shakeri, M., Sodaeezadeh, H. and Hakimi Meybodi, M., 2004. Preliminary study on the effect of allelopathic and nematode killing of Haloxylon aphyllum extract. *Journal of Research and Development*, 17 (1): 75-80.

[30]. Su, Y.Z., Xue, F.W., Rong, Y. and Jaehoon, L. 2010. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. *J. Environment Management*, 91:2109-2116

[31]. Zehtabian, Gh., Azarnivand, H., Jafari, M., Nazeri, H. and Ismaelzadeh, H., 2006. Effect of different species of Haloxylon sp. and *Calligonum comosum* in stabilization and modification of sandunes in Semnan (Reza Abad), *Desert Journal*, 11(1): 175-167.