SEED PRIMING AND FORTIFICATION OF SEEDS USING NANOTECHNOLOGY: A REVIEW
DOI:
https://doi.org/10.53555/eijaer.v9i1.68Keywords:
priming, nanoparticle, ROS, nanotechnology, nanocarriersAbstract
A new agricultural revolution is required to improve crop yield while also ensuring food quality and safety in a sustainable manner. Nano-priming affects biochemical pathways as well as the equilibrium of reactive oxygen compounds and plants growth hormones. This enhances stress and disease tolerance, resulting in a decrease in fertilizers and pesticides. Nano-priming alters biochemical systems and the balance of reactive oxygen compounds and PGR, causing stress and disease resistance and a reduction in fertilizers and pesticides. The current study gives an overview of achievements in the sector, highlighting the obstacles and opportunities for using nanotechnology in seed nano-priming to contribute to sustainable agriculture practices. Nano priming can be treated to seeds to protect them during storage, promote germination, germination synchronization, and plant development, and boost crop tolerance to biotic or abiotic stress conditions, which can assist to minimize the amount of pesticides and fertilizers needed.
References
Abdel Latef, A. A. H., Abu Alhmad, M. F., & Abdelfattah, K. E. (2016). The Possible Roles of Priming with ZnO Nanoparticles in Mitigation of Salinity Stress in Lupine (Lupinus termis) Plants. Undefined, 36(1), 60–70. https://doi.org/10.1007/S00344-016-9618-X
Afzal, I., Basara, S.M.A., Faooq, M. and Nawaz, A. (2006) Alleviation of Salinity Stress in Spring Wheat by Hormonal Priming with ABA, Salicylic Acid and Ascorbic Acid. International Journal of Agriculture and Biology, 8, 23-28. - References - Scientific Research Publishing. (n.d.). Retrieved October 19, 2022, from https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=1743465
Arnott, A., Galagedara, L., Thomas, R., Cheema, M., & Sobze, J. M. (2021). The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: A review. Science of The Total Environment, 775, 145139. https://doi.org/10.1016/J.SCITOTENV.2021.145139
Bruce, T. J. A., Matthes, M. C., Napier, J. A., & Pickett, J. A. (2007). Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science, 173(6), 603–608. https://doi.org/10.1016/J.PLANTSCI.2007.09.002
Camara, M. C., Campos, E. V. R., Monteiro, R. A., do Espirito Santo Pereira, A., de Freitas Proença, P. L., & Fraceto, L. F. (2019). Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. Journal of Nanobiotechnology, 17(1). https://doi.org/10.1186/S12951-019-0533-8
Chang, H. (2002). Effect of seed priming with mixed-salt solution on germination and physiological characteristics of seedling in rice (Oryza sativa L.) under stress conditions. Undefined.
Das, C. K., Jangir, H., Kumar, J., Verma, S., Mahapatra, S. S., Philip, D., Srivastava, G., & Das, M. (2018). Nano-pyrite seed dressing: a sustainable design for NPK equivalent rice production. Nanotechnology for Environmental Engineering, 3(1). https://doi.org/10.1007/S41204-018-0043-1
de La Torre-Roche, R., Cantu, J., Tamez, C., Zuverza-Mena, N., Hamdi, H., Adisa, I. O., Elmer, W., Gardea-Torresdey, J., & White, J. C. (2020a). Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition? Undefined, 68(44), 12189–12202. https://doi.org/10.1021/ACS.JAFC.0C04881
de La Torre-Roche, R., Cantu, J., Tamez, C., Zuverza-Mena, N., Hamdi, H., Adisa, I. O., Elmer, W., Gardea-Torresdey, J., & White, J. C. (2020b). Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition? Journal of Agricultural and Food Chemistry, 68(44), 12189–12202. https://doi.org/10.1021/ACS.JAFC.0C04881
Duran, N. M., Savassa, S. M., Lima, R. G. de, de Almeida, E., Linhares, F. S., van Gestel, C. A. M., & Pereira De Carvalho, H. W. (2017). X-ray Spectroscopy Uncovering the Effects of Cu Based Nanoparticle Concentration and Structure on Phaseolus vulgaris Germination and Seedling Development. Undefined, 65(36), 7874–7884. https://doi.org/10.1021/ACS.JAFC.7B03014
Evenari, M. (1984). Seed Physiology: Its History from antiquity to the beginning of the 20th century. The Botanical Review 1984 50:2, 50(2), 119–142. https://doi.org/10.1007/BF02861090
Falsini, S., Clemente, I., Papini, A., Tani, C., Schiff, S., Salvatici, M. C., Petruccelli, R., Benelli, C., Giordano, C., Gonnelli, C., & Ristori, S. (2019). When Sustainable Nanochemistry Meets Agriculture: Lignin Nanocapsules for Bioactive Compound Delivery to Plantlets. Undefined, 7(24), 19935–19942. https://doi.org/10.1021/ACSSUSCHEMENG.9B05462
Fischer, J., Beckers, S. J., Yiamsawas, D., Thines, E., Landfester, K., & Wurm, F. R. (2019). Targeted Drug Delivery in Plants: Enzyme‐Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Advanced Science, 6(15). https://doi.org/10.1002/ADVS.201802315
Fraceto, L. F., Grillo, R., Medeiros, G. A. de, Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Frontiers in Environmental Science, 4. https://www.academia.edu/24840524/Nanotechnology_in_Agriculture_Which_Innovation_Potential_Does_It_Have
Hamada, A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Undefined.
Home | National Nanotechnology Initiative. (n.d.). Retrieved October 19, 2022, from https://www.nano.gov/
Hur, S. (1991). Effect of osmoconditioning on the productivity of Italian ryegrass and sorghum under suboptimal conditions. Undefined.
Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3(NOV), 64. https://doi.org/10.3389/FCHEM.2015.00064/BIBTEX
Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K., & Patil, B. S. (2019). Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense-Linked Hormones in Watermelon Seedlings. Undefined, 7(5), 5142–5151. https://doi.org/10.1021/ACSSUSCHEMENG.8B06013
Li, R., He, J., Xie, H., Wang, W., Bose, S. K., Sun, Y., Hu, J., & Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 126, 91–100. https://doi.org/10.1016/J.IJBIOMAC.2018.12.118
Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. v, … فاطمی, ح. (1998). Endosperm cap weakening and endo-beta-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Science Research, 8(1), 483–491. https://doi.org/10.2/JQUERY.MIN.JS
Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. The Science of the Total Environment, 573, 1089–1102. https://doi.org/10.1016/J.SCITOTENV.2016.08.120
Maswada, H. F., Djanaguiraman, M., & Prasad, P. V. V. (2018). Seed treatment with nano‐iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Undefined, 204(6), 577–587. https://doi.org/10.1111/JAC.12280
Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Undefined, 20(1). https://doi.org/10.1186/S12951-022-01423-8
Panyuta, O., Belava, V., Fomaidi, S., Kalinichenko, O., Volkogon, M., & Taran, N. (2016). The Effect of Pre-sowing Seed Treatment with Metal Nanoparticles on the Formation of the Defensive Reaction of Wheat Seedlings Infected with the Eyespot Causal Agent. Undefined, 11(1), 1–5. https://doi.org/10.1186/S11671-016-1305-0
Pereira, A. D. E. S., Oliveira, H. C., Fraceto, L. F., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. In Nanomaterials (Vol. 11, Issue 2, pp. 1–29). MDPI AG. https://doi.org/10.3390/nano11020267
PERRY, D. (1980). THE CONCEPT OF SEED VIGOUR AND ITS RELEVANCE TO SEED PRODUCTION TECHNIQUES. THE CONCEPT OF SEED VIGOUR AND ITS RELEVANCE TO SEED PRODUCTION TECHNIQUES.
Pill, W., & Necker, A. (2001). The effects of seed treatments on germination and establishment of Kentucky bluegrass (Poa pratensis L.). Undefined.
Sci-Hub | Green-Synthesized Nanoparticles Enhanced Seedling Growth, Yield, and Quality of Onion (Allium cepa L.). ACS Sustainable Chemistry & Engineering | 10.1021/acssuschemeng.9b02180. (n.d.). Retrieved October 19, 2022, from https://sci-hub.se/10.1021/acssuschemeng.9b02180
Siddaiah, C. N., Prasanth, K. V. H., Satyanarayana, N. R., Mudili, V., Gupta, V. K., Kalagatur, N. K., Satyavati, T., Dai, X. F., Chen, J. Y., Mocan, A., Singh, B. P., & Srivastava, R. K. (2018). Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Scientific Reports, 8(1), 2485. https://doi.org/10.1038/S41598-017-19016-Z
Solanki, P., & Laura, J. S. (2018). Effect of ZnO nanoparticles on seed germination and seedling growth in wheat (Triticum aestivum). ~ 2048 ~ Journal of Pharmacognosy and Phytochemistry, 7(5), 2048–2052.
Suzuki, H., & Khan, A. (2000). Effective temperatures and duration for seed humidification in snap bean (Phaseolus vulgaris L.). Undefined.
Taniguchi, N. (1974) On the Basic Concept of Nanotechnology. Proceedings of the International Conference on Production Engineering, Tokyo, 18-23. - References - Scientific Research Publishing. (n.d.). Retrieved October 19, 2022, from https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1973088
Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Frontiers in Plant Science, 10. https://doi.org/10.3389/FPLS.2019.01336
Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J. A., Valdés, C., Medina-Velo, I. A., Turley, R. S., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. through Priming: A Sustainable Approach for Agriculture. Undefined, 8(3), 1427–1436. https://doi.org/10.1021/ACSSUSCHEMENG.9B05615.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 EPH - International Journal of Agriculture and Environmental Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.