UNRAVELING THE COMPLEXITIES OF SOIL MICROBIOMES: A REVIEW OF THEIR ROLE IN CROP PRODUCTION AND HEALTH

Authors

  • Ahmad Ullah Khan
  • Hassan Ahmad
  • Zaryab Khan
  • Manahil Noor
  • Marwa Bibi
  • Abdul Majeed Khan

DOI:

https://doi.org/10.53555/eijaer.v10i1.101

Keywords:

soil microbiomes, crop production, nutrient cycling, plant growth promotion, disease suppression, abiotic stress resilience, sustainable agriculture

Abstract

Soil microbiomes are complex and diverse communities of microorganisms that play a vital role in crop production and health. Understanding the intricacies of soil microbiomes and their interactions with plants and the environment is crucial for developing sustainable agricultural practices. This review paper explores the complexities of soil microbiomes and their role in crop production and health, with a focus on nutrient cycling, plant growth promotion, disease suppression, and resilience to abiotic stresses. The review then explores the manipulation of soil microbiomes for sustainable agriculture. It discusses strategies for enhancing beneficial microbial communities, such as organic amendments, conservation tillage, crop rotation, and cover cropping. The application of bioinoculants and biofertilizers is examined, highlighting their potential benefits and limitations. The integration of soil microbiome information into precision agriculture is explored as a means to optimize resource use and improve crop management. Challenges and future directions in the field are addressed in the subsequent section. The complexity of microbial interactions, the translation of knowledge into practice, and the harnessing of microbiomes for specific purposes are discussed. The impact of climate change and environmental stresses on soil microbiomes is examined, along with the potential for microbiomes to mitigate climate change. Understanding and manipulating soil microbiomes offer promising opportunities for sustainable agriculture. By promoting beneficial microbial communities and implementing targeted management practices, farmers can enhance crop productivity, disease control, and stress tolerance while minimizing environmental impacts. However, challenges remain in unraveling microbial interactions, translating knowledge into field-scale applications, and harnessing microbiomes for specific purposes. Future research should focus on addressing these challenges and exploring innovative strategies to optimize soil microbiomes for sustainable agriculture.

Author Biographies

Ahmad Ullah Khan

The University of Agriculture Peshawar, Pakistan,

Hassan Ahmad

 University of Rawalpindi, Pakistan

Zaryab Khan

The University of Agriculture Peshawar, Pakistan

Manahil Noor

The University of Agriculture Peshawar, Pakistan

Marwa Bibi

The University of Agriculture Peshawar, Pakistan

Abdul Majeed Khan

The University of Agriculture Peshawar, Pakistan

References

. Afridi, M. S., Fakhar, A., Kumar, A., Ali, S., Medeiros, F. H., Muneer, M. A., ... & Saleem, M. (2022). Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiological Research, 127199.

. Ahmad, F., Ahmad, I., & Khan, M. S. (2019). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 221, 43-52.

. Arif, I., Batool, M., & Schenk, P. M. (2020). Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends in Biotechnology, 38(12), 1385-1396.

. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., ... & Subramanian, S. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473.

. Banerjee, S., & van der Heijden, M. G. (2023). Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6-20.

. Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., ... & Schulin, R. (2021). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 15(1), 214-226.

. Bashan, Y., Kloepper, J. W., de-Bashan, L. E., & Prabhu, S. R. (2014). A proposal for avoiding fresh produce in the search for new commercial biofertilizers or biocontrol agents. Biology and Fertility of Soils, 50(1), 9-24.

. Bastías, D. A., Applegate, E. R., Johnson, L. J., & Card, S. D. (2022). Factors controlling the effects of mutualistic bacteria on plants associated with fungi. Ecology Letters, 25(8), 1879-1888.

. Basu, S., Kumar, G., Chhabra, S., & Prasad, R. (2021). Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In New and future developments in microbial biotechnology and bioengineering (pp. 149-157). Elsevier.

. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486.

. Bonfante, P., & Genre, A. (2015). Arbuscular mycorrhizas: The lives of beneficial fungi and their plant hosts. eLife, 4, e09193.

. Brewin, N. J. (2018). Plant-microbe interactions: Nitrogen fixation in perspective. In Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment (pp. 1-26). Springer.

. Chaib De Mares, M., Sipkema, D., Huang, S., Bunk, B., Overmann, J., & Van Elsas, J. D. (2017). Host specificity for bacterial, archaeal and fungal communities determined for high-and low-microbial abundance sponge species in two genera. Frontiers in Microbiology, 8, 2560.

. Das, P. P., Singh, K. R., Nagpure, G., Mansoori, A., Singh, R. P., Ghazi, I. A., ... & Singh, J. (2022). Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214, 113821.

. Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., ... & Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359(6373), 320-325.

. Dowarah, B., Gill, S. S., & Agarwala, N. (2021). Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation, 1-16.

. Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 102048.

. Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590.

. Hartman, K., van der Heijden, M. G. A., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1-14.

. Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35-46.

. Lavelle, P., & Spain, A. (2002). Soil ecology. Springer Science & Business Media.

. Madouh, T. A., & Quoreshi, A. M. (2023). The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review. Diversity, 15(3), 391.

. Maheshwari, D. K., Das, A., Dheeman, S., & Pandey, P. (2023). An Overall Insight Into the Attributes, Interactions, and Future Applications of “Microbial Consortium” for Plant Growth Promotion with Contemporary Approaches. Sustainable Agrobiology: Design and Development of Microbial Consortia, 3-22.

. Mahmud, K., Missaoui, A., Lee, K., Ghimire, B., Presley, H. W., & Makaju, S. (2021). Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology, 27, 100210.

. MITRA, D, DE LOS SANTOS-VILLALOBOS, S., PARRA-COTA, F. I., MONTELONGO, A. M. G., BLANCO, E. L., OLATUNBOSUN, A. N., ... & MOHAPATRA, P. K. D. (2023). Rice (Oryza sativa L.) plant protection using dual biological control and plant growth-promoting agents: Current scenarios and future prospects. Pedosphere, 33(2), 268-286.

. Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R., McClure, R., ... & Jansson, J. K. (2020). Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources, 45(1), 29-59.

. Naz, R., Khushhal, S., Asif, T., Mubeen, S., Saranraj, P., & Sayyed, R. Z. (2022). Inhibition of Bacterial and Fungal Phytopathogens Through Volatile Organic Compounds Produced by Pseudomonas sp. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion (pp. 95-118). Cham: Springer International Publishing.

. Nugent, A., & Allison, S. D. (2022). A framework for soil microbial ecology in urban ecosystems. Ecosphere, 13(3), e3968.

. Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. ISME Journal, 9(4), 980-989.

. Pineda, A., Kaplan, I., & Bezemer, T. M. (2020). Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 25(10), 1008-1017.

. Pineda, A., Kaplan, I., & Bezemer, T. M. (2020). Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 25(10), 1008-1017.

. Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2011). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 1(8), 420-423.

. Rawal, S., & Ali, S. A. (2023). Probiotics and postbiotics play a role in maintaining dermal health. Food & Function.

. Richardson, A. E., George, T. S., & Jakobsen, I. (2011). Plant nutrient interactions in arbuscular mycorrhizal symbiosis. In Molecular Microbial Ecology of the Rhizosphere (Vol. 1, pp. 163-179). John Wiley & Sons.

. Roy‐Bolduc, A., Laliberté, E., & Hijri, M. (2016). High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecology and Evolution, 6(1), 349-362.

. Sangwan, S., & Prasanna, R. (2022). Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microbial ecology, 84(1), 1-10.

. Sattley, W. M., & Madigan, M. T. (2015). Microbiology. eLS, 1-10.

. Shah, K. K., Tripathi, S., Tiwari, I., Shrestha, J., Modi, B., Paudel, N., & Das, B. D. (2021). Role of soil microbes in sustainable crop production and soil health: A review. Agricultural Science & Technology (1313-8820), 13(2).

. Six, J., Elliott, E. T., Paustian, K., & Doran, J. W. (2004). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 68(5), 1741-1748.

. Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., ... & Nocker, A. (2020). A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 551(7681), 457-463.

. Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959.

. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206.

. Verma, J. P., Yadav, J., & Tiwari, K. N. (2019). Enhancing sustainable agriculture through biofertilizers technology: Prospects and future challenges. Sustainability, 11(17), 4604.

. Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2019). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 116(17), 8328-8337.

. Wang, J., Hu, A., Meng, F., Zhao, W., Yang, Y., Soininen, J., ... & Zhou, J. (2022). Embracing mountain microbiome and ecosystem functions under global change. New Phytologist, 234(6), 1987-2002.

. Yang, S., Imran, & Ortas, I. (2023). Impact of mycorrhiza on plant nutrition and food security. Journal of Plant Nutrition, 1-26.

. Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., ... & Xing, K. (2019). Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of agricultural and food chemistry, 67(13), 3702-3710.

Downloads

Published

2024-03-15