SYNTHETIC SEED TECHNOLOGY, APPLICATION AND FUTURE TRENDS
DOI:
https://doi.org/10.53555/eijaer.v9i1.67Keywords:
artificial seeds, Encapsulation technology, polyoxyethyleneAbstract
In nature, seeds are typically the primary method of plant propagation. Some plants can be vegetatively propagated but conventional methods are time consuming, expensive and cannot produce plants at larger scale. Synthetic seed technology could play a significant role in the production of artificial seeds, or Syn-seeds. Somatic embryos lacked crucial auxiliary tissues like endosperm and protective coverings, which made them difficult to handle and store. Two kinds of somatic embryos are known as desiccated and hydrated seeds based on the techniques developed thus far. The goal of this study is to emphasize the historical and current status of the creation of synthetic seeds. The micropropagation method is still one of the main barriers to the advancement of artificial seed technology. Despite the use of somatic embryos for artificial seed generation in a variety of plant species, there are still some significant problems that must be resolved before progress can be made. The synthetic seed process is a godsend for the vegetative multiplication, conservation, & long-term conservation of rare, endangered, and vulnerable species' superior germplasm. The current scenario of artificial seed to advance agriculture innovation still requires more practical directed appliances.
References
Ahmed, M. R., Anis, M., & Al-Etta, H. A. (2015a). Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Undefined, 26(2), 133–139. https://doi.org/10.1007/S12210-014-0366-1
Ahmed, M. R., Anis, M., & Al-Etta, H. A. (2015b). Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Undefined, 26(2), 133–139. https://doi.org/10.1007/S12210-014-0366-1
Alatar, A. A., Faisal, M., Abdel-Salam, E. M., Canto, T., Saquib, Q., Javed, S. B., El-Sheikh, M. A., & Al-Khedhairy, A. A. (2017). Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi Journal of Biological Sciences, 24(6), 1430–1436. https://doi.org/10.1016/J.SJBS.2017.03.008
Andrzejewska-Golec, E., & Makowczyńska, J. (2011). Somatic seeds of Plantago asiatica L. Undefined, 75(1), 17–21. https://doi.org/10.5586/ASBP.2006.003
Ara, H., Jaiswal, U., & Jaiswal, V. (2000). Synthetic seed: prospects and limitations. Undefined.
Baskaran, P., Kumari, A., & van Staden, J. (2014). Embryogenesis and synthetic seed production in Mondia whitei. Undefined, 121(1), 205–214. https://doi.org/10.1007/S11240-014-0695-X
Baskaran, P., Kumari, A., & van Staden, J. (2018). In vitro propagation via organogenesis and synthetic seeds of Urginea altissima (L.f.) Baker: a threatened medicinal plant. 3 Biotech, 8(1). https://doi.org/10.1007/S13205-017-1028-7
Brar, D. S., & Khush, G. S. (2021). Cell and Tissue Culture for Plant Improvement. Mechanisms of Plant Growth and Improved Productivity, 229–278. https://doi.org/10.1201/9781003210252-8
Chandrasekhara Reddy, M., Sri, K., Murthy, R., & Pullaiah, T. (2012). Synthetic seeds: A review in agriculture and forestry. African Journal of Biotechnology, 11(78), 14254–14275. https://doi.org/10.5897/AJB12.770
Cheruvathur, M. K., Kumar, G. K., & Thomas, T. D. (2012). Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz. Undefined, 113(1), 63–71. https://doi.org/10.1007/S11240-012-0251-5
Corrie, S., & Tandon, P. (1993). Propagation of Cymbidium giganteum wall through high frequency conversion of encapsulated protocorms under in vivo and in vitro conditions. Undefined.
Danso, K. E., & Ford-Lloyd, B. v. (2003). Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Reports, 21(8), 718–725. https://doi.org/10.1007/S00299-003-0594-9
Dhir, R., & Shekhawat, G. S. (2013a). Production, storability and morphogenic response of alginate encapsulated axillary meristems and genetic fidelity evaluation of in vitro regenerated Ceropegia bulbosa: A pharmaceutically important threatened plant species. Undefined, 47, 139–144. https://doi.org/10.1016/J.INDCROP.2013.02.005
Dhir, R., & Shekhawat, G. S. (2013b). Production, storability and morphogenic response of alginate encapsulated axillary meristems and genetic fidelity evaluation of in vitro regenerated Ceropegia bulbosa: A pharmaceutically important threatened plant species. Undefined, 47, 139–144. https://doi.org/10.1016/J.INDCROP.2013.02.005
Drew, R. L. K. (1980). A cheap, simple apparatus for growing large batches of plant tissue in submerged liquid culture. Plant Science Letters, 17(2), 227–236. https://doi.org/10.1016/0304-4211(80)90152-2
Faisal, M., Alatar, A. A., & Hegazy, A. K. (2012). Molecular and Biochemical Characterization in Rauvolfia tetraphylla Plantlets Grown from Synthetic Seeds Following In Vitro Cold Storage. Applied Biochemistry and Biotechnology 2012 169:2, 169(2), 408–417. https://doi.org/10.1007/S12010-012-9977-0
Gantait, S., Kundu, S., Ali, N., & Sahu, N. C. (2015a). Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiologiae Plantarum 2015 37:5, 37(5), 1–12. https://doi.org/10.1007/S11738-015-1847-2
Gantait, S., Kundu, S., Ali, N., & Sahu, N. C. (2015b). Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Undefined, 37(5). https://doi.org/10.1007/S11738-015-1847-2
Gantait, S., Kundu, S., Ali, N., & Sahu, N. C. (2015c). Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Undefined, 37(5). https://doi.org/10.1007/S11738-015-1847-2
Gantait, S., & Sinniah, U. R. (2012). Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. Plant Biotechnology Reports 2012 7:3, 7(3), 257–266. https://doi.org/10.1007/S11816-012-0257-9
Gray, D. J., & Purohit, A. (1991). Somatic embryogenesis and development of synthetic seed technology. Critical Reviews in Plant Sciences, 10(1), 33–61. https://doi.org/10.1080/07352689109382306
Helal, N. A. S. (2011). The green revolution via synthetic (artificial) seeds: a review. Research Journal of Agriculture and Biological Sciences, 7(6), 464–477.
Hung, C. D., & Trueman, S. J. (2011). Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiologiae Plantarum 2011 34:1, 34(1), 117–128. https://doi.org/10.1007/S11738-011-0810-0
Jung, S. J., Yoon, E. S., Jeong, J. H., & Choi, Y. E. (2004). Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Reports 2004 23:6, 23(6), 365–370. https://doi.org/10.1007/S00299-004-0821-Z
Khan, M. I., Ahmad, N., Anis, M., Alatar, A. A., & Faisal, M. (2018). In vitro conservation strategies for the Indian willow (Salix tetrasperma Roxb.), a vulnerable tree species via propagation through synthetic seeds. Biocatalysis and Agricultural Biotechnology, 16, 17–21. https://doi.org/10.1016/J.BCAB.2018.07.002
Kim, M. A., & Park, J. K. (2002). High frequency plant regeneration of garlic (Allium sativum L.) calli immobilized in calcium alginate gel. Undefined, 7(4), 206–211. https://doi.org/10.1007/BF02932971
Kitto, S. L., & Janick, J. (1985). Production of Synthetic Seeds by Encapsulating Asexual Embryos of Carrot. Journal of the American Society for Horticultural Science, 110(2), 277–282. https://doi.org/10.21273/JASHS.110.2.277
Mandal, J., Pattnaik, S., & Chand, P. K. (2000). Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. Basilicum L. (sweet basil), O. Gratissimum L. (shrubby basil), and O. Sanctum. L. (sacred basil). Undefined, 36(4), 287–292. https://doi.org/10.1007/S11627-000-0052-0
Micheli, M., Hafiz, I. A., & Standardi, A. (2007). Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo): II. Effects of storage on capsule and derived shoots performance. Undefined, 113(3), 286–292. https://doi.org/10.1016/J.SCIENTA.2007.04.001
Mohanraj, R., Ananthan, R., & Bai, V. N. (2009). Production and storage of synthetic seeds in Coelogyne breviscapa Lindl. Undefined, 1(3), 124–128. https://doi.org/10.3923/AJBKR.2009.124.128
Mohanty, P., Pynbeitsyon, •, Meera, N. •, Das, C., Kumaria, S., & Tandon, P. (2012). Short-term storage of alginate-encapsulated protocorm-like bodies of Dendrobium nobile Lindl.: an endangered medicinal orchid from North-east India. 3 Biotech, 3(3), 235–239. https://doi.org/10.1007/S13205-012-0090-4
Nagananda, G. S., Satishchandra, N., & Rajath, S. (2011). Regeneration of encapsulated Protocorm like Bodies of medicinally important vulnerable orchid Flickingeria nodosa (Dalz.) Seidenf. International Journal of Botany, 7(4), 310–313. https://doi.org/10.3923/IJB.2011.310.313
Naik, S. K., & Chand, P. K. (2006). Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Scientia Horticulturae, 108(3), 247–252. https://doi.org/10.1016/J.SCIENTA.2006.01.030
Nandini, B., & Giridhar, P. (2019). Insight view of topical trends on synthetic seeds of rare and endangered plant species and its future prospects. Synthetic Seeds: Germplasm Regeneration, Preservation and Prospects, 113–154. https://doi.org/10.1007/978-3-030-24631-0_5/COVER
Nishitha, I. K., Martin, K. P., Ligimol, Shahanaz Beegum, A., & Madhusoodanan, P. v. (2006). Micropropagation and encapsulation of medicinally important Chonemorpha grandiflora. In Vitro Cellular & Developmental Biology - Plant 2006 42:5, 42(5), 385–388. https://doi.org/10.1079/IVP2006762
Nongdam, P., & Chongtham, N. (2011). In vitro rapid propagation of Cymbidium aloifolium (L.) Sw.: A medicinally important orchid via seed culture. Journal of Biological Sciences, 11(3), 254–260. https://doi.org/10.3923/JBS.2011.254.260
Nongdam, P., & Tikendra, L. (2014). Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl. using seed culture. TheScientificWorldJournal, 2014. https://doi.org/10.1155/2014/740150
Oceania, C., Doni, T., Tikendra, L., & Nongdam, P. (2015). Establishment of efficient in vitro culture and plantlet generation of tomato (Lycopersicon esculentum Mill.) and development of synthetic seeds. Journal of Plant Sciences, 10(1), 15–24. https://doi.org/10.3923/JPS.2015.15.24
Palei, S., Rout, G. R., Das, A. K., & Dash, D. K. (2017). Callus Induction and Indirect Regeneration of Strawberry (Fragaria × Ananassa) Duch. CV. Chandler. International Journal of Current Microbiology and Applied Sciences, 6(11), 1311–1318. https://doi.org/10.20546/IJCMAS.2017.611.157
Parveen, S., & Shahzad, A. (2013). Encapsulation of nodal segments of Cassia angustifolia Vahl. for short-term storage and germplasm exchange. Acta Physiologiae Plantarum 2013 36:3, 36(3), 635–640. https://doi.org/10.1007/S11738-013-1441-4
(PDF) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). (n.d.). Retrieved September 3, 2022, from https://www.researchgate.net/publication/238520399_A_synthetic_seed_method_through_encapsulation_of_in_vitro_proliferated_bulblets_of_garlic_Allium_sativum_L
(PDF) Development of Synthetic Seed Technology in Plants and its Applications: A Review. (n.d.). Retrieved September 1, 2022, from https://www.researchgate.net/publication/343179931_Development_of_Synthetic_Seed_Technology_in_Plants_and_its_Applications_A_Review
Rai, M. K., Asthana, P., Singh, S. K., Jaiswal, V. S., & Jaiswal, U. (2009). The encapsulation technology in fruit plants--a review. Biotechnology Advances, 27(6), 671–679. https://doi.org/10.1016/J.BIOTECHADV.2009.04.025
Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Alginate-encapsulation of nodal segments of guava (Psidium guajava L.) for germplasm exchange and distribution. Journal of Horticultural Science and Biotechnology, 83(5), 569–573. https://doi.org/10.1080/14620316.2008.11512425
Raju, C. S., Aslam, A., & Shajahan, A. (2016). Germination and storability of calcium-alginate coated somatic embryos of mango ginger (Curcuma amada Roxb.). Undefined, 57(1), 88–96. https://doi.org/10.1007/S13580-016-0096-7
Ray, A., & Bhattacharya, S. (2008). Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina — An effective way of conservation and mass propagation. South African Journal of Botany, 74(4), 776–779. https://doi.org/10.1016/J.SAJB.2008.06.002
Redenbaugh, K. (1993). Synseeds: applications of synthetic seeds to crop improvement. Undefined.
Redenbaugh, K., Fujii, J., Slade, D., Viss, P., & Kossler, M. (1991). Artificial Seeds — Encapsulated Somatic Embryos. 395–416. https://doi.org/10.1007/978-3-642-76415-8_22
Redenbaugh, K., Paasch, B. D., Nichol, J. W., Kossler, M. E., Viss, P. R., & Walker, K. A. (1986a). Somatic Seeds: Encapsulation of Asexual Plant Embryos. Bio/Technology 1986 4:9, 4(9), 797–801. https://doi.org/10.1038/nbt0986-797
Redenbaugh, K., Paasch, B. D., Nichol, J. W., Kossler, M. E., Viss, P. R., & Walker, K. A. (1986b). Somatic Seeds: Encapsulation of Asexual Plant Embryos. Undefined, 4(9), 797–801. https://doi.org/10.1038/NBT0986-797
Reinert, J. (1959). Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 1959 53:4, 53(4), 318–333. https://doi.org/10.1007/BF01881795
Rihan, H., Al-Shamari, M., Al-swedi, F., Burchett, S., Michael, P., & Fuller. (2013). The effect of sugar type , source and concentration on Brassica oleraceae var botrytis microproshoot production.
Rihan, H. Z., Al-Issawi, M., Al-swedi, F., & Fuller, M. P. (2012a). The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial seed produced. Undefined, 141, 47–52. https://doi.org/10.1016/J.SCIENTA.2012.03.018
Rihan, H. Z., Al-Issawi, M., Al-swedi, F., & Fuller, M. P. (2012b). The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial seed produced. Scientia Horticulturae, 141, 47–52. https://doi.org/10.1016/J.SCIENTA.2012.03.018
Rihan, H. Z., Kareem, F., El-Mahrouk, M. E., & Fuller, M. P. (2017a). Artificial Seeds (Principle, Aspects and Applications). Undefined, 7(4). https://doi.org/10.3390/AGRONOMY7040071
Rihan, H. Z., Kareem, F., El-Mahrouk, M. E., & Fuller, M. P. (2017b). Artificial Seeds (Principle, Aspects and Applications). Agronomy 2017, Vol. 7, Page 71, 7(4), 71. https://doi.org/10.3390/AGRONOMY7040071
Saiprasad, G. V. S. (2001a). Artificial seeds and their applications. Undefined, 6(5), 39–47. https://doi.org/10.1007/BF02839082
Saiprasad, G. V. S. (2001b). Artificial seeds and their applications. Resonance 2001 6:5, 6(5), 39–47. https://doi.org/10.1007/BF02839082
Sharma, A., Tandon, P., & Kumar, A. (1992). REGENERATION OF DENDROBIUM WARDIANUM WARNE (ORCHIDACEAE) FROM SYNTHETIC SEEDS. Undefined.
Sharma, S., Shahzad, A., & Teixeira da Silva, J. A. (2013a). Synseed technology-a complete synthesis. Biotechnology Advances, 31(2), 186–207. https://doi.org/10.1016/J.BIOTECHADV.2012.09.007
Sharma, S., Shahzad, A., & Teixeira da Silva, J. A. (2013b). Synseed technology-a complete synthesis. Biotechnology Advances, 31(2), 186–207. https://doi.org/10.1016/J.BIOTECHADV.2012.09.007
Steward, F. C., Mapes, M. O., & Mears, K. (1958). Growth and Organized Development of Cultured Cells. II. Organization in Cultures Grown from Freely Suspended Cells. American Journal of Botany, 45(10), 705. https://doi.org/10.2307/2439728
Wagley, L. M., Gladfelter, H. J., & Phillips, G. C. (1987). De novo shoot organogenesis of Pinus eldarica Medw. in vitro : II. Macro- and micro-photographic evidence of de novo regeneration. Plant Cell Reports, 6(3), 167–171. https://doi.org/10.1007/BF00268469
Williams, E. G., & Maheswaran, G. (1986). Somatic Embryogenesis: Factors Influencing Coordinated Behaviour of Cells as an Embryogenic Group. Annals of Botany, 57(4), 443–462. https://doi.org/10.1093/OXFORDJOURNALS.AOB.A087127
Zimmerman, J. L. (1993). Somatic Embryogenesis: A Model for Early Development in Higher Plants. The Plant Cell, 5(10), 1411–1423. https://doi.org/10.1105/TPC.5.10.1411.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 EPH - International Journal of Agriculture and Environmental Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.