AVAILABILITY OF PHOSPHOROUS TO THE SOIL, THEIR SIGNIFICANCE FOR ROOTS OF PLANTS AND ENVIRONMENT.
DOI:
https://doi.org/10.53555/eijaer.v10i1.97Keywords:
Phosphorus, Plant Growth, Sustainability, Soil Accessibility, Environmental Effects, Microbial Activity Nutrient Supply, Phosphate IonsAbstract
In addition to being a crucial component of plant growth, phosphorus (P) is also important for preserving the
sustainability of the environment. The accessibility of phosphorus in soil, its vital importance for plant roots, and the
wider environmental effects of managing it are all covered in this abstract. The intricate interaction of multiple elements,
including soil pH, biological material content, and microbial activity, determines the availability of phosphorus in soil. It
is essential to comprehend and maximize phosphorus availability to guarantee a sufficient supply of nutrients to plant
roots. Plants absorb phosphorus mostly in the form of phosphate ions (H2PO4). A deficiency of phosphorus in the soil
can cause stunted growth, lower agricultural yields, and general plant health problems. Plants have developed several
tactics to improve their uptake of phosphorus, such as the exudation of organic acids from their roots and as well as
symbiotic relationships with mycorrhizae fungus. These adaptations demonstrate how important phosphorus is to plant
life and ecological health.
References
. Ai, P., Sun, S., Zhao, J., & Xu, G. (2009). Regulation and function of Pht1 family phosphate transporters in rice.
. Alori, E. T., Glick, B. R., & Babalola, O. O. J. F. i. m. (2017). Microbial phosphorus solubilization and its potential
for use in sustainable agriculture. 8, 971.
. Arpat, A. B., Magliano, P., Wege, S., Rouached, H., Stefanovic, A., & Poirier, Y. J. T. P. J. (2012). Functional
expression of PHO1 to the Golgi and trans‐Golgi network and its role in export of inorganic phosphate. 71(3), 479-
. Ayadi, A., David, P., Arrighi, J.-F., Chiarenza, S., Thibaud, M.-C., Nussaume, L., & Marin, E. J. P. P. (2015).
Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate
uptake and signaling. 167(4), 1511-1526.
. Balzergue, C., Puech-Pagès, V., Bécard, G., & Rochange, S. F. J. J. o. E. B. (2011). The regulation of arbuscular
mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. 62(3), 1049-1060.
. Bates, T., Lynch, J. J. P., cell, & environment. (1996). Stimulation of root hair elongation in Arabidopsis thaliana
by low phosphorus availability. 19(5), 529-538.
. Behera, M., Bhattacharyya, S., Minocha, A., Deoliya, R., Maiti, S. J. C., & materials, b. (2014). Recycled aggregate
from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. 68,
-516.
. Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., Traini, R., . . . Swarup, K. J. N. c. (2018). A
mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. 9(1), 1409.
. Bicharanloo, B., Salomon, M. J., Cavagnaro, T. R., Keitel, C., Brien, C., Jewell, N., . . . Soil. (2023). Arbuscular
mycorrhizae are important for phosphorus uptake and root biomass, and exudation for nitrogen uptake in tomato
plants grown under variable water conditions. 1-18.
. Brown, L., George, T., Thompson, J., Wright, G., Lyon, J., Dupuy, L., . . . White, P. J. A. o. B. (2012). What are
the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water
stress in barley (Hordeum vulgare)? , 110(2), 319-328.
. Brown, L. K., George, T. S., Barrett, G. E., Hubbard, S. F., White, P. J. J. P., & Soil. (2013). Interactions between
root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). 372,
-205.29
. Burak, E., Quinton, J. N., & Dodd, I. C. J. A. o. B. (2021). Root hairs are the most important root trait for
rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). 128(1), 45-57.
. Calderón-Vázquez, C., Alatorre-Cobos, F., Simpson-Williamson, J., & Herrera-Estrella, L. J. H. o. m. I. b. (2009).
Maize under phosphate limitation. 381-404.
. Carminati, A., Passioura, J. B., Zarebanadkouki, M., Ahmed, M. A., Ryan, P. R., Watt, M., & Delhaize, E. J. N. P.
(2017). Root hairs enable high transpiration rates in drying soils. 216(3), 771-781.
. Cheng, L., Bucciarelli, B., Liu, J., Zinn, K., Miller, S., Patton-Vogt, J., . . . Vance, C. P. J. P. p. (2011). White lupin
cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester
phosphodiesterases. 156(3), 1131-1148.
. Chiou, T. J., Liu, H., & Harrison, M. J. J. T. P. J. (2001). The spatial expression patterns of a phosphate transporter
(MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. 25(3), 281-293.
. De Bauw, P., Mai, T. H., Schnepf, A., Merckx, R., Smolders, E., & Vanderborght, J. J. A. o. b. (2020). A
functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for
phosphate uptake from wet and dry soils. 126(4), 789-806.
. Dissanayaka, D., Plaxton, W. C., Lambers, H., Siebers, M., Marambe, B., Wasaki, J. J. P., Cell, & Environment.
(2018). Molecular mechanisms underpinning phosphorus‐use efficiency in rice. 41(7), 1483-1496.
. Eriksson, A. K., Hesterberg, D., Klysubun, W., & Gustafsson, J. P. J. S. o. t. T. E. (2016). Phosphorus dynamics
in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch
experiments and XANES spectroscopy. 566, 1410-1419.
. Fageria, N., Santos, A., Reis Jr, R. J. C. i. s. s., & analysis, p. (2014). Agronomic evaluation of phosphorus sources
in lowland rice production. 45(15), 2067-2091.
. Fageria, N. K. (2013). Mineral nutrition of rice: CRC press.
. Fan, X.-D., Wang, J.-Q., Yang, N., Dong, Y.-Y., Liu, L., Wang, F.-W., . . . Sun, Y.-P. J. G. (2013). Gene expression
profiling of soybean leaves and roots under salt, saline–alkali and drought stress by high-throughput Illumina
sequencing. 512(2), 392-402.
. Föhse, D., Claassen, N., Jungk, A. J. P., & Soil. (1991). Phosphorus efficiency of plants: II. Significance of root
radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. 132, 261-272.
. Franco‐Zorrilla, J. M., Martin, A. C., Solano, R., Rubio, V., Leyva, A., & Paz‐Ares, J. J. T. P. J. (2002). Mutations
at CRE1 impair cytokinin‐induced repression of phosphate starvation responses in Arabidopsis. 32(3), 353-360.
. Fujita, K., Kai, Y., Takayanagi, M., El-Shemy, H., Adu-Gyamfi, J. J., & Mohapatra, P. K. J. P. S. (2004). Genotypic
variability of pigeonpea in distribution of photosynthetic carbon at low phosphorus level. 166(3), 641-649.
. Gahoonia, T., Nielsen, N. J. P., Cell, & Environment. (2003). Phosphorus (P) uptake and growth of a root hairless
barley mutant (bald root barley, brb) and wild type in low‐and high‐P soils. 26(10), 1759-1766.
. Gaxiola, R. A., Edwards, M., & Elser, J. J. J. C. (2011). A transgenic approach to enhance phosphorus use
efficiency in crops as part of a comprehensive strategy for sustainable agriculture. 84(6), 840-845.
. George, T. S., Brown, L. K., Ramsay, L., White, P. J., Newton, A. C., Bengough, A. G., . . . Thomas, W. T. J. N.
P. (2014). Understanding the genetic control and physiological traits associated with rhizosheath production by
barley (H ordeum vulgare). 203(1), 195-205.
. George, T. S., Fransson, A.-M., Hammond, J. P., & White, P. J. J. P. i. a. b. p. i. s. p. c. (2011). Phosphorus nutrition:
rhizosphere processes, plant response and adaptations. 245-271.
. Gilroy, S., & Jones, D. L. J. T. i. p. s. (2000). Through form to function: root hair development and nutrient uptake.
(2), 56-60.
. Glaser, B., & Lehr, V.-I. J. S. r. (2019). Biochar effects on phosphorus availability in agricultural soils: A metaanalysis. 9(1), 9338.
. Gomez-Ariza, J., Balestrini, R., Novero, M., Bonfante, P. J. B., & Soils, F. o. (2009). Cell-specific gene expression
of phosphate transporters in mycorrhizal tomato roots. 45, 845-853.
. Grossman, J. D., & Rice, K. J. J. E. A. (2012). Evolution of root plasticity responses to variation in soil nutrient
distribution and concentration. 5(8), 850-857.
. Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Müller, J., Hause, B., . . . Franken, P. J. P. (2009).
Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular
mycorrhizal, P i-fertilised and phytohormone-treated Medicago truncatula roots. 229, 1023-1034.
. Gu, B.-W., Lee, C.-G., Lee, T.-G., & Park, S.-J. J. S. o. t. T. E. (2017). Evaluation of sediment capping with
activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments. 599, 413-421.
. Gu, R., Chen, F., Long, L., Cai, H., Liu, Z., Yang, J., . . . Genomics. (2016). Enhancing phosphorus uptake
efficiency through QTL-based selection for root system architecture in maize. 43(11), 663-672.
. Güimil, S., Chang, H.-S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., . . . Descombes, P. J. P. o. t. N. A. o. S.
(2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization.
(22), 8066-8070.
. Guo, W., Zhao, J., Li, X., Qin, L., Yan, X., & Liao, H. J. T. P. J. (2011). A soybean β‐expansin gene GmEXPB2
intrinsically involved in root system architecture responses to abiotic stresses. 66(3), 541-552.
. Gyaneshwar, P., Naresh Kumar, G., Parekh, L., Poole, P. J. P., & soil. (2002). Role of soil microorganisms in
improving P nutrition of plants. 245, 83-93.30
. Haling, R. E., Brown, L. K., Bengough, A. G., Valentine, T. A., White, P. J., Young, I. M., & George, T. S. J. P.
(2014). Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley
genotypes. 239, 643-651.
. Haling, R. E., Simpson, R. J., Delhaize, E., Hocking, P. J., Richardson, A. E. J. P., & Soil. (2010). Effect of lime
on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. 327, 199-212.
. Ham, B.-K., Chen, J., Yan, Y., & Lucas, W. J. J. C. O. i. B. (2018). Insights into plant phosphate sensing and
signaling. 49, 1-9.
. Hammond, J. P., Broadley, M. R., White, P. J., King, G. J., Bowen, H. C., Hayden, R., . . . Spracklen, W. P. J. J.
o. e. b. (2009). Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root
architecture traits. 60(7), 1953-1968.
. Hanlon, M. T., Ray, S., Saengwilai, P., Luthe, D., Lynch, J. P., & Brown, K. M. J. J. o. e. b. (2018). Buffered
delivery of phosphate to Arabidopsis alters responses to low phosphate. 69(5), 1207-1219.
. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. J. A. o. m. (2010). Soil beneficial bacteria and their role in
plant growth promotion: a review. 60, 579-598.
. Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P., Nussaume, L., & Thibaud, M. J. B. (2006). Phosphate
deficiency promotes modification of iron distribution in Arabidopsis plants. 88(11), 1767-1771.
. Ho, M. D., McCannon, B. C., & Lynch, J. P. J. J. o. T. B. (2004). Optimization modeling of plant root architecture
for water and phosphorus acquisition. 226(3), 331-340.
. Holz, M., Zarebanadkouki, M., Kuzyakov, Y., Pausch, J., & Carminati, A. J. A. o. B. (2018). Root hairs increase
rhizosphere extension and carbon input to soil. 121(1), 61-69.
. Huang, W., Liu, J., Wang, Y. P., Zhou, G., Han, T., Li, Y. J. P., & Soil. (2013). Increasing phosphorus limitation
along three successional forests in southern China. 364, 181-191.
. Jain, A., Poling, M. D., Karthikeyan, A. S., Blakeslee, J. J., Peer, W. A., Titapiwatanakun, B., . . . Raghothama, K.
G. J. P. P. (2007). Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation
of different traits of root system architecture in Arabidopsis. 144(1), 232-247.
. Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., . . . Xu, G. J. P. P. (2011). The phosphate transporter gene
OsPht1; 8 is involved in phosphate homeostasis in rice. 156(3), 1164-1175.
. Jing, J., Rui, Y., Zhang, F., Rengel, Z., & Shen, J. J. F. C. R. (2010). Localized application of phosphorus and
ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification.
(2-3), 355-364.
. Jones, D. L., & Oburger, E. J. P. i. a. b. p. i. s. p. c. (2011). Solubilization of phosphorus by soil microorganisms.
-198.
. Jungk, A. J. J. o. P. N., & Science, S. (2001). Root hairs and the acquisition of plant nutrients from soil. 164(2),
-129.
. Kabir, Z., Koide, R. J. A., ecosystems, & environment. (2000). The effect of dandelion or a cover crop on
mycorrhiza inoculum potential, soil aggregation and yield of maize. 78(2), 167-174.
. Kang, S.-M., Joo, G.-J., Hamayun, M., Na, C.-I., Shin, D.-H., Kim, H. Y., . . . Lee, I.-J. J. B. l. (2009). Gibberellin
production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on
plant growth. 31, 277-281.
. Karthikeyan, A. S., Varadarajan, D. K., Mukatira, U. T., D'Urzo, M. P., Damsz, B., & Raghothama, K. G. J. P. p.
(2002). Regulated expression of Arabidopsis phosphate transporters. 130(1), 221-233.
. Kereszt, A., Li, D., Indrasumunar, A., Nguyen, C. D., Nontachaiyapoom, S., Kinkema, M., & Gresshoff, P. M. J.
N. p. (2007). Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. 2(4), 948-952.
. Kirkby, E. A., & Johnston, A. E. J. T. e. o. p.-p. i. (2008). Soil and fertilizer phosphorus in relation to crop nutrition.
-223.
. Klamer, F., Vogel, F., Li, X., Bremer, H., Neumann, G., Neuhäuser, B., . . . Ludewig, U. J. A. o. b. (2019).
Estimating the importance of maize root hairs in low phosphorus conditions and under drought. 124(6), 961-968.
. Kochian, L. V. J. N. (2012). Rooting for more phosphorus. 488(7412), 466-467.
. Kohli, P. S., Maurya, K., Thakur, J. K., Bhosale, R., Giri, J. J. P., Cell, & Environment. (2022). Significance of
root hairs in developing stress‐resilient plants for sustainable crop production. 45(3), 677-694.
. Kuo, H. F., Chang, T. Y., Chiang, S. F., Wang, W. D., Charng, Y. y., & Chiou, T. J. J. T. P. J. (2014). Arabidopsis
inositol pentakisphosphate 2‐kinase, A t IPK 1, is required for growth and modulates phosphate homeostasis at the
transcriptional level. 80(3), 503-515.
. Lambers, H., Albornoz, F., Kotula, L., Laliberté, E., Ranathunge, K., Teste, F. P., . . . Soil. (2018). How
belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely
phosphorus-impoverished hyperdiverse ecosystems. 424, 11-33.
. Li, M., Qin, C., Welti, R., & Wang, X. J. P. p. (2006). Double knockouts of phospholipases D ζ 1 and D ζ 2 in
Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. 140(2),
-770.
. Li, Z., Gao, Q., Liu, Y., He, C., Zhang, X., & Zhang, J. J. P. (2011). Overexpression of transcription factor ZmPTF1
improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. 233, 1129-1143.31
. Liang, C. Y., Chen, Z. J., Yao, Z. F., Tian, J., & Liao, H. J. J. o. i. p. b. (2012). Characterization of two putative
protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris F. 54(6), 400-411.
. Liu, R., & Lal, R. J. S. r. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine
max). 4(1), 5686.
. Liu, T.-Y., Aung, K., Tseng, C.-Y., Chang, T.-Y., Chen, Y.-S., & Chiou, T.-J. J. P. P. (2011). Focus Issue on
Phosphorus Plant Physiology: Vacuolar Ca2+/H+ Transport Activity Is Required for Systemic Phosphate
Homeostasis Involving Shoot-to-Root Signaling in Arabidopsis. 156(3), 1176.
. Liu, X., Zhao, X., Zhang, L., Lu, W., Li, X., & Xiao, K. J. F. P. B. (2013). TaPht1; 4, a high-affinity phosphate
transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under
phosphorus deprivation. 40(4), 329-341.
. López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J., & HerreraEstrella, L. J. P. p. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in
the Arabidopsis root system. 129(1), 244-256.
. Lundmark, M., Nilsson, L., Kørner, C. J., & Nielsen, T. H. J. F. P. B. (2011). Overexpression of the MYB-related
transcription factor GCC7 in Arabidopsis thaliana leads to increased levels of Pi and changed P-dependent gene
regulation. 38(2), 151-162.
. Lv, X., Pu, X., Qin, G., Zhu, T., & Lin, H. J. A. (2014). The roles of autophagy in development and stress responses
in Arabidopsis thaliana. 19, 905-921.
. Lynch, J. P., Brown, K. M. J. P., & Soil. (2001). Topsoil foraging–an architectural adaptation of plants to low
phosphorus availability. 237, 225-237.
. Lynch, J. P., Ho, M. D., Phosphorus, L. J. P., & soil. (2005). Rhizoeconomics: carbon costs of phosphorus
acquisition. 269, 45-56.
. Lynch, J. P. J. A. J. o. B. (2007). Roots of the second green revolution. 55(5), 493-512.
. Ma, Z., Bielenberg, D., Brown, K., Lynch, J. J. P., cell, & environment. (2001). Regulation of root hair density by
phosphorus availability in Arabidopsis thaliana. 24(4), 459-467.
. Macrae, M., Ali, G., King, K., Plach, J., Pluer, W., Williams, M., . . . Tang, W. J. J. o. e. q. (2019). Evaluating
hydrologic response in tile‐drained landscapes: Implications for phosphorus transport. 48(5), 1347-1355.
. Maharajan, T., Ceasar, S. A., Ajeesh krishna, T. P., Ramakrishnan, M., Duraipandiyan, V., Naif Abdulla, A. D., &
Ignacimuthu, S. J. P. B. (2018). Utilization of molecular markers for improving the phosphorus efficiency in crop
plants. 137(1), 10-26.
. Marin, M., Feeney, D., Brown, L., Naveed, M., Ruiz, S., Koebernick, N., . . . Puértolas, J. J. A. o. B. (2021).
Significance of root hairs for plant performance under contrasting field conditions and water deficit. 128(1), 1-16.
. Misson, J., Thibaud, M.-C., Bechtold, N., Raghothama, K., & Nussaume, L. J. P. m. b. (2004). Transcriptional
regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to
phosphate uptake in phosphate deprived plants. 55, 727-741.
. Mudge, S. R., Rae, A. L., Diatloff, E., & Smith, F. W. J. T. P. J. (2002). Expression analysis suggests novel roles
for members of the Pht1 family of phosphate transporters in Arabidopsis. 31(3), 341-353.
. Nagarajan, V. K., Jain, A., Poling, M. D., Lewis, A. J., Raghothama, K. G., & Smith, A. P. J. P. P. (2011).
Arabidopsis Pht1; 5 mobilizes phosphate between source and sink organs and influences the interaction between
phosphate homeostasis and ethylene signaling. 156(3), 1149-1163.
. Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. J. A. o. b. (2013). Responses of root
architecture development to low phosphorus availability: a review. 112(2), 391-408.
. Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., . . . Thibaud, M.-C. J. F. i. p. s. (2011).
Phosphate import in plants: focus on the PHT1 transporters. 2, 83.
. Oberson, A., & Joner, E. J. J. O. p. i. t. e. (2005). Microbial turnover of phosphorus in soil. 133-164.
. Pang, J., Bansal, R., Zhao, H., Bohuon, E., Lambers, H., Ryan, M. H., . . . Siddique, K. H. J. N. P. (2018). The
carboxylate‐releasing phosphorus‐mobilizing strategy can be proxied by foliar manganese concentration in a large
set of chickpea germplasm under low phosphorus supply. 219(2), 518-529.
. Parker, J. S., Cavell, A. C., Dolan, L., Roberts, K., & Grierson, C. S. J. T. P. C. (2000). Genetic interactions during
root hair morphogenesis in Arabidopsis. 12(10), 1961-1974.
. Paszkowski, U., Kroken, S., Roux, C., & Briggs, S. P. J. P. o. t. N. A. o. S. (2002). Rice phosphate transporters
include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. 99(20), 13324-
. Pausch, J., Loeppmann, S., Kühnel, A., Forbush, K., Kuzyakov, Y., Cheng, W. J. S. B., & Biochemistry. (2016).
Rhizosphere priming of barley with and without root hairs. 100, 74-82.
. Penn, C. J., & Camberato, J. J. J. A. (2019). A critical review on soil chemical processes that control how soil pH
affects phosphorus availability to plants. 9(6), 120.
. Péret, B., Clément, M., Nussaume, L., & Desnos, T. J. T. i. p. s. (2011). Root developmental adaptation to
phosphate starvation: better safe than sorry. 16(8), 442-450.
. Pérez-Torres, C.-A., Lopez-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., & HerreraEstrella, L. J. T. P. C. (2008). Phosphate availability alters lateral root development in Arabidopsis by modulating
auxin sensitivity via a mechanism involving the TIR1 auxin receptor. 20(12), 3258-3272.32
. Poirier, Y., & Bucher, M. J. T. A. b. A. S. o. P. B. (2002). Phosphate transport and homeostasis in Arabidopsis. 1.
. Poirier, Y., Thoma, S., Somerville, C., & Schiefelbein, J. J. P. p. (1991). Mutant of Arabidopsis deficient in xylem
loading of phosphate. 97(3), 1087-1093.
. Qin, L., Zhao, J., Tian, J., Chen, L., Sun, Z., Guo, Y., . . . Liao, H. J. P. p. (2012). The high-affinity phosphate
transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. 159(4), 1634-1643.
. Quintero, C. E., Boschetti, N. G., Benavidez, R. A. J. C. i. s. s., & analysis, p. (2003). Effect of soil buffer capacity
on soil test phosphorus interpretation and fertilizer requirement. 34(9-10), 1435-1450.
. Raghothama, K., Karthikeyan, A. J. P., & Soil. (2005). Phosphate acquisition. 274, 37-49.
. Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W., & Vanderleyden, J. J. F. C. R. (2010). Strategies for
improving phosphorus acquisition efficiency of crop plants. 117(2-3), 169-176.
. Rausch, C., & Bucher, M. J. P. (2002). Molecular mechanisms of phosphate transport in plants. 216, 23-37.
. Requejo, M. I., & Eichler-Löbermann, B. J. N. C. i. A. (2014). Organic and inorganic phosphorus forms in soil as
affected by long-term application of organic amendments. 100, 245-255.
. Richardson, A. E., & Simpson, R. J. J. P. p. (2011). Soil microorganisms mediating phosphorus availability update
on microbial phosphorus. 156(3), 989-996.
. Richardson, A. E. J. P., & soil. (2009). Regulating the phosphorus nutrition of plants: molecular biology meeting
agronomic needs. 322(1-2), 17-24.
. Roach, T., Beckett, R. P., Minibayeva, F. V., Colville, L., Whitaker, C., Chen, H., . . . Environment. (2010).
Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea
sativa seeds. 33(1), 59-75.
. Roberts, T. L., Johnston, A. E. J. R., conservation, & recycling. (2015). Phosphorus use efficiency and management
in agriculture. 105, 275-281.
. Robertson-Albertyn, S., Alegria Terrazas, R., Balbirnie, K., Blank, M., Janiak, A., Szarejko, I., . . . Hedley, P. E.
J. F. i. p. s. (2017). Root hair mutations displace the barley rhizosphere microbiota. 8, 1094.
. Robles-Aguilar, A. A., Pang, J., Postma, J. A., Schrey, S. D., Lambers, H., Jablonowski, N. D. J. P., & soil. (2019).
The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a
recycled phosphorus source. 434, 65-78.
. Ros, M. B., Koopmans, G. F., van Groenigen, K. J., Abalos, D., Oenema, O., Vos, H. M., & van Groenigen, J. W.
J. S. R. (2020). Towards optimal use of phosphorus fertiliser. 10(1), 17804.
. Rose, T. J., Rose, M. T., Pariasca-Tanaka, J., Heuer, S., & Wissuwa, M. J. F. i. P. S. (2011). The frustration with
utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? , 2,
. Rouached, H., Stefanovic, A., Secco, D., Bulak Arpat, A., Gout, E., Bligny, R., & Poirier, Y. J. T. P. J. (2011).
Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in
Arabidopsis. 65(4), 557-570.
. Rubio, M. C., Becana, M., Kanematsu, S., Ushimaru, T., & James, E. K. J. N. P. (2009). Immunolocalization of
antioxidant enzymes in high‐pressure frozen root and stem nodules of Sesbania rostrata. 183(2), 395-407.
. Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Gutiérrez-Ortega, A., Hernández-Abreu, E., & HerreraEstrella, L. J. P. p. (2006). Characterization of low phosphorus insensitive mutants reveals a crosstalk between low
phosphorus-induced determinate root development and the activation of genes involved in the adaptation of
Arabidopsis to phosphorus deficiency. 140(3), 879-889.
. Sanderson, K. R., & Sanderson, J. B. J. C. j. o. p. s. (2006). Prince Edward Island growers can reduce soil
phosphorus buildup while maintaining carrot crop yield. 86(Special Issue), 1401-1403.
. Schneider, K. D., Thiessen Martens, J. R., Zvomuya, F., Reid, D. K., Fraser, T. D., Lynch, D. H., . . . Wilson, H.
F. J. J. o. E. Q. (2019). Options for improved phosphorus cycling and use in agriculture at the field and regional
scales. 48(5), 1247-1264.
. Schunmann, P. H., Richardson, A. E., Vickers, C. E., & Delhaize, E. J. P. P. (2004). Promoter analysis of the barley
Pht1; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate
deprivation. 136(4), 4205-4214.
. Seeling, B., Zasoski, R. J. J. P., & Soil. (1993). Microbial effects in maintaining organic and inorganic solution
phosphorus concentrations in a grassland topsoil. 148, 277-284.
. Seo, H.-M., Jung, Y., Song, S., Kim, Y., Kwon, T., Kim, D.-H., . . . Nam, M.-H. J. B. L. (2008). Increased
expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. 30, 1833-1838.
. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., . . . Zhang, F. J. P. p. (2011). Phosphorus dynamics: from
soil to plant. 156(3), 997-1005.
. Shi, J., Hu, H., Zhang, K., Zhang, W., Yu, Y., Wu, Z., & Wu, P. J. J. o. E. B. (2014). The paralogous SPX3 and
SPX5 genes redundantly modulate Pi homeostasis in rice. 65(3), 859-870.
. Shin, H., Shin, H. S., Dewbre, G. R., & Harrison, M. J. J. T. P. J. (2004). Phosphate transport in Arabidopsis: Pht1;
and Pht1; 4 play a major role in phosphate acquisition from both low‐and high‐phosphate environments. 39(4),
-642.
. Singh, R., & Yadav, M. J. J. o. F. L. (2008). Effect of phosphorus and biofertilizers on growth, yield and nutrient
uptake of long duration pigeonpea under rainfed condition. 21(1), 46-48.33
. Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. J. P. p. (2011). Roles of arbuscular mycorrhizas in plant
phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have
important implications for understanding and manipulating plant phosphorus acquisition. 156(3), 1050-1057.
. Song, G., & Liu, S. J. A. O. S. (2015). Phosphorus speciation and distribution in surface sediments of the Yellow
Sea and East China Sea and potential impacts on ecosystem. 34, 84-91.
. Stefanovic, A., Arpat, A. B., Bligny, R., Gout, E., Vidoudez, C., Bensimon, M., & Poirier, Y. J. T. P. J. (2011).
Over‐expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. 66(4), 689-699.
. Stefanovic, A., Ribot, C., Rouached, H., Wang, Y., Chong, J., Belbahri, L., . . . Poirier, Y. J. T. P. J. (2007).
Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are
regulated by phosphate deficiency via distinct pathways. 50(6), 982-994.
. Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., & Adl, S. J. C. (2018). Phosphorus recovery and reuse by
pyrolysis: Applications for agriculture and environment. 194, 682-691.
. Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., . . . Desnos, T. J. N. g.
(2007). Root tip contact with low-phosphate media reprograms plant root architecture. 39(6), 792-796.
. Szarejko, I., Janiak, A., Chmielewska, B., & Nawrot, M. J. B. G. N. (2005). Genetic analysis of several root hair
mutants of barley. 35, 36-38.
. Ticconi, C. A., Delatorre, C. A., Lahner, B., Salt, D. E., & Abel, S. J. T. P. J. (2004). Arabidopsis pdr2 reveals a
phosphate‐sensitive checkpoint in root development. 37(6), 801-814.
. Tran, H. T., Qian, W., Hurley, B. A., SHE, Y. M., Wang, D., Plaxton, W. C. J. P., cell, & environment. (2010).
Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase
isozymes secreted by phosphate‐starved Arabidopsis thaliana. 33(11), 1789-1803.
. Tyburski, J., Dunajska-Ordak, K., Skorupa, M., & Tretyn, A. J. J. o. B. (2012). Role of ascorbate in the regulation
of the Arabidopsis thaliana root growth by phosphate availability. 2012.
. Tyburski, J., Dunajska, K., Tretyn, A. J. P. s., & behavior. (2010). A role for redox factors in shaping root
architecture under phosphorus deficiency. 5(1), 64-66.
. Uddin, M. J., Ahmed, S., Rashid, M., Hasan, M. M., & Asaduzzaman, M. J. J. o. A. R. (2011). Effect of spacing
on the yield and yield attributes of transplanted aman rice cultivars in medium lowland ecosystem of Bangladesh.
(4), 465-476.
. van de Wiel, C. C., van der Linden, C. G., & Scholten, O. E. J. E. (2016). Improving phosphorus use efficiency in
agriculture: opportunities for breeding. 207, 1-22.
. Vance, C. P., Uhde‐Stone, C., & Allan, D. L. J. N. p. (2003). Phosphorus acquisition and use: critical adaptations
by plants for securing a nonrenewable resource. 157(3), 423-447.
. Wang, Q., Wang, J., Yang, Y., Du, W., Zhang, D., Yu, D., & Cheng, H. J. B. g. (2016). A genome-wide expression
profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. 17, 1-11.
. Wang, X., Wang, Y., Tian, J., Lim, B. L., Yan, X., & Liao, H. J. P. P. (2009). Overexpressing AtPAP15 enhances
phosphorus efficiency in soybean. 151(1), 233-240.
. Wang, Y., Lambers, H. J. P., & Soil. (2020). Root-released organic anions in response to low phosphorus
availability: recent progress, challenges and future perspectives. 447, 135-156.
. Wang, Y., Thorup-Kristensen, K., Jensen, L. S., & Magid, J. J. F. i. p. s. (2016). Vigorous root growth is a better
indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. 7, 865.
. Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., . . . Yu, Y. J. P. o. t. N. A. o. S. (2014). Rice SPX1
and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner.
(41), 14953-14958.
. Wasaki, J., Maruyama, H., Tanaka, M., Yamamura, T., Dateki, H., Shinano, T., . . . nutrition, p. (2009).
Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake
and growth of tobacco plants. 55(1), 107-113.
. Wen, T. J., & Schnable, P. S. J. A. j. o. b. (1994). Analyses of mutants of three genes that influence root hair
development in Zea mays (Gramineae) suggest that root hairs are dispensable. 81(7), 833-842.
. Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., . . . Shen, J. J. N. P. (2019). Tradeoffs among root
morphology, exudation and mycorrhizal symbioses for phosphorus‐acquisition strategies of 16 crop species.
(2), 882-895.
. Wendrich, J. R., Yang, B., Vandamme, N., Verstaen, K., Smet, W., Van de Velde, C., . . . Arents, H. E. J. S. (2020).
Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. 370(6518),
eaay4970.
. White, P. J., George, T. S., Dupuy, L. X., Karley, A. J., Valentine, T. A., Wiesel, L., & Wishart, J. J. F. i. p. s.
(2013). Root traits for infertile soils. 4, 193.
. White, P. J., Veneklaas, E. J. J. P., & soil. (2012). Nature and nurture: the importance of seed phosphorus content.
, 1-8.
. Wild, M., Davière, J.-M., Regnault, T., Sakvarelidze-Achard, L., Carrera, E., Diaz, I. L., . . . Achard, P. J. D. C.
(2016). Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses. 37(2),
-200.34
. Williamson, L. C., Ribrioux, S. P., Fitter, A. H., & Leyser, H. O. J. P. p. (2001). Phosphate availability regulates
root system architecture in Arabidopsis. 126(2), 875-882.
. Wu, P., Shou, H., Xu, G., & Lian, X. J. C. o. i. p. b. (2013). Improvement of phosphorus efficiency in rice on the
basis of understanding phosphate signaling and homeostasis. 16(2), 205-212.
. Wu, P., & Wang, Z. J. F. i. B. (2011). Molecular mechanisms regulating Pi-signaling and Pi homeostasis under
OsPHR2, a central Pi-signaling regulator, in rice. 6, 242-245.
. Yamada, T. M., Sueitt, A., Beraldo, D., Botta, C., Fadini, P., Nascimento, M., . . . Mozeto, A. J. W. R. (2012).
Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir:
microcosm experiments. 46(19), 6463-6475.
. Yang, H., Knapp, J., Koirala, P., Rajagopal, D., Peer, W. A., Silbart, L. K., . . . Gaxiola, R. A. J. P. b. j. (2007).
Enhanced phosphorus nutrition in monocots and dicots over‐expressing a phosphorus‐responsive type I H+‐
pyrophosphatase. 5(6), 735-745.
. Yang, K., Jeong, N., Moon, J.-K., Lee, Y.-H., Lee, S.-H., Kim, H. M., . . . Jeong, S.-C. J. J. o. H. (2010). Genetic
analysis of genes controlling natural variation of seed coat and flower colors in soybean. 101(6), 757-768.
. Yang, S.-Y., Grønlund, M., Jakobsen, I., Grotemeyer, M. S., Rentsch, D., Miyao, A., . . . Salamin, N. J. T. P. C.
(2012). Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE
TRANSPORTER1 gene family. 24(10), 4236-4251.
. Yang, Y., Shi, X., Ballent, W., & Mayer, B. K. J. W. E. R. (2017). Biological phosphorus recovery: Review of
current progress and future needs: Yang et al. 89(12), 2122-2135.
. Yi, K., Wu, Z., Zhou, J., Du, L., Guo, L., Wu, Y., & Wu, P. J. P. p. (2005). OsPTF1, a novel transcription factor
involved in tolerance to phosphate starvation in rice. 138(4), 2087-2096.
. Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., . . . Zhang, Q. J. P. o. (2011). Gains in QTL detection using an
ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. 6(3),
e17595.
. Zak, D., Goldhammer, T., Cabezas, A., Gelbrecht, J., Gurke, R., Wagner, C., . . . McInnes, R. J. J. o. A. E. (2018).
Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane
emissions from rewetted peatlands. 55(1), 311-320.
. Zhang, C., Ding, S., Xu, D., Tang, Y., Wong, M. H. J. E. M., & Assessment. (2014). Bioavailability assessment of
phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT). 186, 7367-7378.
. Zhang, D., Song, H., Cheng, H., Hao, D., Wang, H., Kan, G., . . . Yu, D. J. P. g. (2014). The acid phosphataseencoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. 10(1), e1004061.
. Zhang, H., Kovar, J. J. M. o. p. a. f. s., sediments, residuals,, & waters. (2009). Fractionation of soil phosphorus.
, 50-60.
. Zhang, J. L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., . . . Yuan, K. D. J. N. l. (2016). Epitaxial growth of
single layer blue phosphorus: a new phase of two-dimensional phosphorus. 16(8), 4903-4908.
. Zhang, L., Hu, B., Li, W., Che, R., Deng, K., Li, H., . . . Chu, C. J. N. P. (2014). Os PT 2, a phosphate transporter,
is involved in the active uptake of selenite in rice. 201(4), 1183-1191.
. Zhang, T., Hu, Y., Zhang, K., Tian, C., Guo, J. J. I. C., & Products. (2018). Arbuscular mycorrhizal fungi improve
plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought
and salt stress. 117, 13-19.
. Zhang, Y.-Q., Deng, Y., Chen, R.-Y., Cui, Z.-L., Chen, X.-P., Yost, R., . . . Soil. (2012). The reduction in zinc
concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application.
, 143-152.
. Zhang, Y., Xu, F., Ding, Y., Du, H., Zhang, Q., Dang, X., . . . Environment. (2021). Abscisic acid mediates barley
rhizosheath formation under mild soil drying by promoting root hair growth and auxin response. 44(6), 1935-1945.
. Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., . . . Lv, Q. J. N. P. (2018). Rice SPX6 negatively regulates
the phosphate starvation response through suppression of the transcription factor PHR2. 219(1), 135-148.
. Zhou, Q. Y., Tian, A. G., Zou, H. F., Xie, Z. M., Lei, G., Huang, J., . . . Chen, S. Y. J. P. b. j. (2008). Soybean
WRKY‐type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential
tolerance to abiotic stresses in transgenic Arabidopsis plants. 6(5), 486-503.
. Zhu, J., Kaeppler, S. M., Lynch, J. P. J. P., & Soil. (2005). Mapping of QTL controlling root hair length in maize
(Zea mays L.) under phosphorus deficiency. 270, 299-310.